
2
Defining Multi-Party Computation

In this chapter, we introduce notations and conventions we will use throughout,
define some basic cryptographic primitives, and provide a security definition
for multi-party computation. Although we will not focus on formal security
proofs or complete formal definitions, it is important to have clear security
definitions to understand exactly what properties protocols are designed to
provide. The protocols we discuss in later chapters have been proven secure
based on these definitions.

2.1 Notations and Conventions

We will abbreviate Secure Multi-Party Computation asMPC, and will use it to
denote secure computation among two or more participants. The term secure
function evaluation (SFE) is often used to mean the same thing, although it can
also apply to contexts where only one party provides inputs to a function that
is evaluated by an outsourced server. Because two-party MPC is an important
special case, which received a lot of targeted attention, and because two-party
protocols are often significantly different from the general n-party case, we
will use 2PC to emphasize this setting when needed.

We assume existence of direct secure channels between each pairs of

15

16 Defining Multi-Party Computation

participating players. Such channels could be achieved inexpensively through
a variety of means, and are out of scope in this book.

We denote encryption and decryption of a message m under key k as
Enck(m) and Deck(m). We will refer to protocol participants interchangeably
also as parties or players, and will usually denote them as P1, P2, etc. We will
denote the adversary by A.

A negligible function ν : N → R is any function that approaches zero
asymptotically faster than any inverse polynomial. In other words, for any
polynomial p, ν(n) < 1/p(n) for all but finitely many n.

We will denote computational and statistical security parameters by κ and
σ respectively. The computational security parameter κ governs the hardness
of problems that can be broken by an adversary’s offline computation — e.g.,
breaking an encryption scheme. In practice κ is typically set to a value like
128 or 256. Even when we consider security against computationally bounded
adversaries, there may be some attacks against an interactive protocol that are
not made easier by offline computation. For example, the interactive nature of
a protocol may give the adversary only a single opportunity to violate security
(e.g., by sending a message that has a special property, like predicting the
random value that an honest party will chose in the next round). The statistical
security parameter σ governs the hardness of these attacks. In practice, σ is
typically set to a smaller value like 40 or 80. The correct way to interpret
the presence of two security parameters is that security is violated only with
probability 2−σ + ν(κ), where ν is a negligible function that depends on the
resources of the adversary. When we consider computationally unbounded
adversaries, we omit κ and require ν = 0.

We will use symbol ∈R to denote uniformly random sampling from a
distribution. For example we write “choose k ∈R {0, 1}κ” to mean that k is
a uniformly chosen κ-bit long string. More generally, we write “v ∈R D” to
denote sampling according to a probability distribution D. Often the distribution
in question is the output of a randomized algorithm. We write “v ∈R A(x)” to
denote that v is the result of running randomized algorithm A on input x.

Let D1 and D2 be two probability distributions indexed by a security
parameter, or equivalently two algorithms that each take a security parameter
as input.1 We say that D1 and D2 are indistinguishable if, for all algorithms A

1In the literature, D1 and D2 are often referred to as an ensemble of distributions.

2.2. Basic Primitives 17

there exists a negligible function ν such that:

Pr[A(D1(n)) = 1] − Pr[A(D2(n)) = 1] ≤ ν(n)

In other words, no algorithm behaves more than negligibly differently when
given inputs sampled according to D1 vs D2. When we consider only non-
uniform, polynomial-time algorithms A, the definition results in computational
indistinguishability.When we consider all algorithms without regard to their
computational complexity, we get a definition of statistical indistinguishability.
In that case, the probability above is bounded by the statistical distance (also
known as total variation distance) of the two distributions, which is defined as:

∆(D1(n),D2(n)) =
1
2

∑
x

��� Pr[x = D1(n)] − Pr[x = D2(n)]
���

Throughout this work, we use computational security to refer to security
against adversaries implemented by non-uniform, polynomial-time algorithms.
We use information-theoretic security (also known as unconditional or statisti-
cal security) to mean security against arbitrary adversaries (even those with
unbounded computational resources).

2.2 Basic Primitives

Here, we provide definitions of a few basic primitives we use in our presentation.
Several other useful primitives are actually special cases of MPC (i.e., they are
defined as MPC of specific functions). These are defined in Section 2.4.

Secret Sharing. Secret sharing is an essential primitive, that is at the core
of many MPC approaches. Informally, a (t, n)-secret sharing scheme splits the
secret s into n shares, such that any t − 1 of the shares reveal no information
about s, while any t shares allow complete reconstruction of the secret s. There
are many variants of possible security properties of secret sharing schemes;
we provide one definition, adapted from Beimel and Chor (1993), next.

Definition 2.1. Let D be the domain of secrets and D1 be the domain of
shares. Let Shr : D→ Dn

1 be a (possibly randomized) sharing algorithm, and
Rec : Dk

1 → D be a reconstruction algorithm. A (t, n)-secret sharing scheme
is a pair of algorithms (Shr,Rec) that satisfies these two properties:

18 Defining Multi-Party Computation

• Correctness. Let (s1, s2, . . . , sn) = Shr(s). Then,

Pr[∀k ≥ t,Rec(si1, . . . , sik) = s] = 1.

• Perfect Privacy. Any set of shares of size less than t does not reveal
anything about the secret in the information theoretic sense. More
formally, for any two secrets a, b ∈ D and any possible vector of shares
v = v1, v2, ..., vk , such that k < t,

Pr[v = Shr(a)|k] = Pr[v = Shr(b)|k],

where |k denotes appropriate projection on a subspace of k elements.

In many of our discussions we will use (n, n)-secret sharing schemes, where
all n shares are necessary and sufficient to reconstruct the secret.

RandomOracle. RandomOracle (RO) is a heuristic model for the security of
hash functions, introduced by Bellare and Rogaway (1993). The idea is to treat
the hash function as a public, idealized random function. In the random oracle
model, all parties have access to the public function H : {0, 1}∗ → {0, 1}κ ,
implemented as a stateful oracle. On input string x ∈ {0, 1}∗, H looks up
its history of calls. If H(x) had never been called, H chooses a random
rx ∈ {0, 1}κ , remembers the pair x, rx and returns rx . If H(x) had been called
before, H returns rx . In this way, the oracle realizes a randomly-chosen function
{0, 1}∗ → {0, 1}κ .

The random oracle model is a heuristic model, because it captures only
those attacks that treat the hash function H as a black-box. It deviates from
reality in that it models a public function (e.g., a standardized hash function
like SHA-256) as an inherently random object. In fact, it is possible to construct
(extremely contrived) schemes that are secure in the random oracle model,
but which are insecure whenever H is instantiated by any concrete function
(Canetti et al., 1998).

Despite these shortcomings, the random oracle model is often considered
acceptable for practical applications. Assuming a random oracle often leads to
significantly more efficient constructions. In this work we will be careful to
state when a technique relies on the random oracle model.

2.3. Security of Multi-Party Computation 19

2.3 Security of Multi-Party Computation

Informally, the goal of MPC is for a group of participants to learn the correct
output of some agreed-upon function applied to their private inputs without
revealing anything else. We now provide a more formal definition to clarify
the security properties MPC aims to provide. First, we present the real-ideal
paradigm which forms the conceptual core of defining security. Then we
discuss two different adversary models commonly used for MPC. Finally, we
discuss issues of composition—namely, whether security preserved in the
natural way when a secure protocol invokes another subprotocol.

2.3.1 Real-Ideal Paradigm

A natural way to define security is to come up with a kind of a “laundry list” of
things that constitute a violation of security. For example, the adversary should
not be able to learn a certain predicate of another party’s input, the adversary
should not be able to induce impossible outputs for the honest parties, and the
adversary should not be able to make its inputs depend on honest parties’ inputs.
Not only is this a tedious approach, but it is cumbersome and error-prone. It is
not obvious when the laundry list could be considered complete.

The real-ideal paradigm avoids this pitfall completely by introducing an
“ideal world” that implicitly captures all security guarantees, and defining
security in relation to this ideal world. Although they used different terminology,
the definition of probabilistic encryption by Goldwasser and Micali (1984) is
widely considered to be the first instance of using this approach to define and
prove security.

Ideal World. In the ideal world, the parties securely compute the function F
by privately sending their inputs to a completely trusted party T , referred to as
the functionality. Each party Pi has an associated input xi , which is sent to T ,
who simply computes F (x1, . . . , xn) and returns the result to all parties. Often
we will make a distinction between F as a trusted party (functionality) and the
circuit C that such a party computes on the private inputs.

We can imagine an adversary attempting to attack the ideal-world inter-
action. An adversary can take control over any of the parties Pi, but not T
(that is the sense in which T is described as a trusted party). The simplicity

20 Defining Multi-Party Computation

of the ideal world makes it easy to understand the effect of such an attack.
Considering our previous laundry list: the adversary clearly learns no more
than F (x1, . . . , xn) since that is the only message it receives; the outputs given
to the honest parties are all consistent and legal; the adversary’s choice of
inputs is independent of the honest parties’.

Although the ideal world is easy to understand, the presence of a fully-
trusted third party makes it imaginary. We use the ideal world as a benchmark
against which to judge the security of an actual protocol.

Real World. In the real world, there is no trusted party. Instead, all parties
communicate with each other using a protocol. The protocol π specifies for
each party Pi a “next-message” function πi. This function takes as input a
security parameter, the party’s private input xi, a random tape, and the list of
messages Pi has received so far. Then, πi outputs either a next message to send
along with its destination, or else instructs the party to terminate with some
specific output.

In the real world, an adversary can corrupt parties—corruption at the
beginning of the protocol is equivalent to the original party being an adversary.
Depending on the threat model (discussed next), corrupt parties may either
follow the protocol as specified, or deviate arbitrarily in their behavior.

Intuitively speaking, the real world protocol π is considered secure if any
effect that an adversary can achieve in the real world can also be achieved by
a corresponding adversary in the ideal world. Put differently, the goal of a
protocol is to provide security in the real world (given a set of assumptions)
that is equivalent to that in the ideal world.

2.3.2 Semi-Honest Security

A semi-honest adversary is one who corrupts parties but follows the protocol as
specified. In other words, the corrupt parties run the protocol honestly but they
may try to learn as much as possible from the messages they receive from other
parties. Note that thismay involve several colluding corrupt parties pooling their
views together in order to learn information. Semi-honest adversaries are also
considered passive in that they cannot take any actions other than attempting
to learn private information by observing a view of a protocol execution.
Semi-honest adversaries are also commonly called honest-but-curious.

2.3. Security of Multi-Party Computation 21

The view of a party consists of its private input, its random tape, and the
list of all messages received during the protocol. The view of an adversary
consists of the combined views of all corrupt parties. Anything an adversary
learns from running the protocol must be an efficiently computable function of
its view. That is, without loss of generality we need only consider an “attack”
in which the adversary simply outputs its entire view.

Following the real-ideal paradigm, security means that such an “attack”
can also be carried out in the ideal world. That is, for a protocol to be secure,
it must be possible in the ideal world to generate something indistinguishable
from the real world adversary’s view. Note that the adversary’s view in the ideal
world consists of nothing but inputs sent to T and outputs received from T .
So, an ideal-world adversary must be able to use this information to generate
what looks like a real-world view. We refer to such an ideal-world adversary
as a simulator, since it generates a “simulated” real-world view while in the
ideal-world itself. Showing that such a simulator exists proves that there is
nothing an adversary can accomplish in the real world that could not also be
done in the ideal world.

More formally, let π be a protocol and F be a functionality. Let C be the
set of parties that are corrupted, and let Sim denote a simulator algorithm. We
define the following distributions of random variables:

• Realπ(κ,C; x1, . . . , xn): run the protocol with security parameter κ,
where each party Pi runs the protocol honestly using private input xi.
Let Vi denote the final view of party Pi , and let yi denote the final output
of party Pi.
Output {Vi | i ∈ C}, (y1, . . . , yn).

• IdealF,Sim(κ,C; x1, . . . , xn): Compute (y1, . . . , yn) ← F (x1, . . . , xn).
Output Sim(C, {(xi, yi) | i ∈ C}), (y1, . . . , yn).

A protocol is secure against semi-honest adversaries if the corrupted parties
in the real world have views that are indistinguishable from their views in the
ideal world:

Definition 2.2. A protocol π securely realizes F in the presence of semi-honest
adversaries if there exists a simulator Sim such that, for every subset of corrupt
parties C and all inputs x1, . . . , xn, the distributions

Realπ(κ,C; x1, . . . , xn)

22 Defining Multi-Party Computation

and
IdealF,Sim(κ,C; x1, . . . , xn)

are indistinguishable (in κ).

In defining Real and Ideal we have included the outputs of all parties, even
the honest ones. This is a way of incorporating a correctness condition into
the definition. In the case that no parties are corrupt (C = ∅), the output of
Real and Ideal simply consists of all parties’ outputs in the two interactions.
Hence, the security definition implies that protocol gives outputs which are
distributed just as their outputs from the ideal functionality (and this is true
even when F is randomized). Because the distribution of y1, . . . , yn in Real
does not depend on the set C of corrupted parties (no matter who is corrupted,
the parties all run honestly), it is not strictly necessary to include these values
in the case of C , ∅, but we choose to include it to have a unified definition.

The semi-honest adversary model may at first glance seem exceedingly
weak—simply reading and analyzing received messages barely even seems
like an attack at all! It is reasonable to ask why such a restrictive adversary
model is worth considering at all. In fact, achieving semi-honest security is far
from trivial and, importantly, semi-honest protocols often serve as a basis for
protocols in more robust settings with powerful attackers. Additionally, many
realistic scenarios do correspond to semi-honest attack behavior. One such
example is computing with players who are trusted to act honestly, but cannot
fully guarantee that their storage might not be compromised in the future.

2.3.3 Malicious Security

A malicious (also known as active) adversary may instead cause corrupted
parties to deviate arbitrarily from the prescribed protocol in an attempt to
violate security. A malicious adversary has all the powers of a semi-honest
one in analyzing the protocol execution, but may also take any actions it
wants during protocol execution. Note that this subsumes an adversary that
can control, manipulate, and arbitrarily inject messages on the network (even
through throughout this book we assume direct secure channels between each
pair of parties). As before, security in this setting is defined in comparison to
the ideal world, but there are two important additions to consider:

2.3. Security of Multi-Party Computation 23

Effect on honest outputs. When the corrupt parties deviate from the protocol,
there is now the possibility that honest parties’ outputs will be affected.
For example, imagine an adversary that causes two honest parties to
output different things while in the ideal world all parties get identical
outputs. This condition is somewhat trivialized in the previous definition
— while the definition does compare real-world outputs to ideal-world
outputs, these outputs have no dependence on the adversary (set of
corrupted parties). Furthermore, we can/should make no guarantees on
the final outputs of corrupt parties, only of the honest parties, since a
malicious party can output whatever it likes.

Extraction. Honest parties follow the protocol according to a well-defined
input, which can be given to T in the ideal world as well. In contrast,
the input of a malicious party is not well-defined in the real world,
which leads to the question of what input should be given to T in the
ideal world. Intuitively, in a secure protocol, whatever an adversary
can do in the real world should also be achievable in the ideal world
by some suitable choice of inputs for the corrupt parties. Hence, we
leave it to the simulator to choose inputs for the corrupt parties. This
aspect of simulation is called extraction, since the simulator extracts an
effective ideal-world input from the real-world adversary that “explains”
the input’s real-world effect. In most constructions, it is sufficient to
consider black-box simulation, where the simulator is given access only
to the oracle implementing the real-world adversary, and not its code.

WhenA denotes the adversary program, we write corrupt(A) to denote the set
of parties that are corrupted, and use corrupt(Sim) for the set of parties that are
corrupted by the ideal adversary, Sim. As we did for the semi-honest security
definition, we define distributions for the real world and ideal world, and define
a secure protocol as one that makes those distributions indistinguishable:

• Realπ,A(κ; {xi | i < corrupt(A)}): run the protocol on security parame-
ter κ, where each honest party Pi (for i < corrupt(A)) runs the protocol
honestly using given private input xi , and the messages of corrupt parties
are chosen according to A (thinking of A as a protocol next-message
function for a collection of parties). Let yi denote the output of each

24 Defining Multi-Party Computation

honest party Pi and let Vi denote the final view of party Pi.
Output ({Vi | i ∈ corrupt(A)}, {yi | i < corrupt(A)}).

• IdealF,Sim(κ; {xi | i < corrupt(A)}): Run Sim until it outputs a set of
inputs {xi | i ∈ corrupt(A)}. Compute (y1, . . . , yn) ← F (x1, . . . , xn).
Then, give {yi | i ∈ corrupt(A)} to Sim.2 Let V∗ denote the final output
of Sim (a set of simulated views).
Output (V∗, {yi | i < corrupt(Sim)}).

Definition 2.3. A protocol π securely realizes F in the presence of malicious
adversaries if for every real-world adversary A there exists a simulator Sim
with corrupt(A) = corrupt(Sim) such that, for all inputs for honest parties
{xi | i < corrupt(A)}, the distributions

Realπ,A(κ; {xi | i < corrupt(A)})

and
IdealF,Sim(κ; {xi | i < corrupt(Sim)})

are indistinguishable (in κ).

Note that the definition quantifies only over the inputs of honest parties
{xi | i < corrupt(A)}. The interaction Real does not consider the corrupt
parties to have any inputs, and the inputs of the corrupt parties in Sim is only
determined indirectly (by the simulator’s choice of what to send to F on the
corrupt parties’ behalf). While it would be possible to also define inputs for
corrupt parties in the real world, such inputs would merely be “suggestions”
since corrupt parties could choose to run the protocol on any other input (or
behave in a way that is inconsistent with all inputs).

Reactive functionalities. In the ideal world, the interaction with the func-
tionality consists of just a single round: inputs followed by outputs. It is possible
to generalize the behavior of F so that it interacts with the parties over many
rounds of interaction, keeping its own private internal state between rounds.
Such functionalities are called reactive.

2To be more formal, we can write the simulator Sim as a pair of algorithms Sim =
(Sim1,Sim2) which capture this two-phase process. Sim1 (on input κ) outputs {xi | i ∈
corrupt(A)} and arbitrary internal state Σ. Then Sim2 takes input Σ and {yi | i ∈ corrupt(A)},
and gives output V∗.

2.3. Security of Multi-Party Computation 25

One example of a reactive functionality is as the dealer in a poker game. The
functionality must keep track of the state of all cards, taking input commands
and giving outputs to all parties in many rounds.

Another example is an extremely common functionality called commitment.
This functionality accepts a bit b (or more generally, a string) from P1 and
gives output “committed” to P2, while internally remembering b. At some
later time, if P1 sends the command “reveal” (or “open”) to the functionality,
it gives b to P2.

Security with abort. In any message-based two-party protocol, one party
will learn the final output before the other. If that party is corrupt and malicious,
they may simply refuse to send the last message to the honest party and thereby
prevent the honest party from learning the output. However, this behavior is
incompatible with our previous description of the ideal world. In the ideal
world, if corrupt parties receive output from the functionality then all parties do.
This property is called output fairness and not all functions can be computed
with this property (Cleve, 1986; Gordon et al., 2008; Asharov et al., 2015a).

Typical results in the malicious setting provide a weaker property known as
security with abort, which requires slightly modifying the ideal functionality as
follows. First, the functionality is allowed to know the identities of the corrupt
parties. The functionality’s behavior is modified to be slightly reactive: after
all parties have provided input, the functionality computes outputs and delivers
the outputs to the corrupt parties only. Then the functionality awaits either
a “deliver” or “abort” command from the corrupted parties. Upon receiving
“deliver”, the functionality delivers the outputs to all the honest parties. Upon
receiving “abort”, the functionality delivers an abort output (⊥) to all the
honest parties.

In this modified ideal world, an adversary is allowed to learn the output
before the honest parties and to prevent the honest parties from receiving any
output. It is important to note, however, that whether an honest party aborts
can depend only on the corrupt party’s outputs. In particular, it would violate
security if the honest party’s abort probability depends on its own input.

Usually the possibility of blocking outputs to honest parties is not writ-
ten explicitly in the description of the functionality. Instead, it is generally
understood that when discussing security against malicious adversaries, the

26 Defining Multi-Party Computation

adversary has control over output delivery to honest parties and output fairness
is not expected.

Adaptive corruption. We have defined both the real and ideal worlds so that
the identities of the corrupted parties are fixed throughout the entire interaction.
This provides what is known as security against static corruption. It is also
possible to consider scenarios where an adversary may choose which parties to
corrupt during the protocol execution, possibly based on what it learns during
the interaction. This behavior is known as adaptive corruption.

Security against adaptive corruption can be modeled in the real-ideal
paradigm, by allowing the adversary to issue a command of the form “corrupt
Pi”. In the real world, this results in the adversary learning the current view
(including private randomness) of Pi and subsequently taking over control
of its protocol messages. In the ideal world, the simulator learns only the
input and outputs of the party upon corruption, and must use this information
to generate simulated views. Of course, the views of parties are correlated
(if Pi sends a message to Pj , then that message is included in both parties’
views). The challenge of adaptive security is that the simulator must produce
views piece-by-piece. For example, the simulator may be asked to produce a
view of Pi when that party is corrupted. Any messages sent by Pj to Pi must
be simulated without knowledge of Pj’s private input. Later, the simulator
might be asked to provide a view of Pj (including its private randomness) that
“explains” its protocol messages as somehow consistent with whatever private
input it had.

In this work we consider only static corruption, following the vast majority
of work in this field.

2.3.4 Hybrid Worlds and Composition

In the interest of modularity, it is often helpful to design protocols that make
use of other ideal functionalities. For example, we may design a protocol π
that securely realizes some functionality F , where the parties of π also interact
with another functionality G in addition to sending messages to each other.
Hence, the real world for this protocol includes G, while the ideal world (as
usual) includes only F . We call this modified real world the G-hybrid world.

2.3. Security of Multi-Party Computation 27

A natural requirement for a security model is composition: if π is a G-
hybrid protocol that securely realizes F (i.e., parties in π send messages and
also interact with an ideal G), and ρ is a protocol that securely realizes G, then
composing π and ρ in the natural way (replacing every invocation of G with
a suitable invocation of ρ) also results in a secure protocol for F . While we
have not defined all of the low-level details of a security model for MPC, it
may be surprising that some very natural ways of specifying the details do not
guarantee composability of secure protocols!

The standard way of achieving guaranteed composition is to use the univer-
sal composability (UC) framework from Canetti (2001). The UC framework
augments the security model that we have sketched here with an additional
entity called the environment, which is included in both the ideal and real
worlds. The purpose of the environment is to capture the “context” in which
the protocol executes (e.g., the protocol under consideration is invoked as a
small step in some larger calling protocol). The environment chooses inputs
for the honest party and receives their outputs. It also may interact arbitrarily
with the adversary.

The same environment is included in the real and ideal worlds, and its
“goal” is to determine whether it is instantiated in the real or ideal world.
Previously we defined security by requiring certain real and ideal views to
be indistinguishable. In this setting, we can also absorb any distinguisher of
these views into the environment itself. Hence, without loss of generality, the
environment’s final output can be just a single bit which can be interpreted
as the environment’s “guess” of whether it is instantiated in the real or ideal
world.

Next, we define the real and ideal executions, where Z is an environment:

• Realπ,A,Z (κ): run an interaction involving adversaryA and environment
Z . When Z generates an input for an honest party, the honest party runs
protocol π, and gives its output to Z . Finally, Z outputs a single bit,
which is taken as the output of Realπ,A,Z (κ).

• IdealF,Sim,Z (κ): run an interaction involving adversary (simulator) Sim
and environment Z . When Z generates an input for an honest party, the
input is passed directly to functionality F and the corresponding output
is given to Z (on behalf of that honest party). The output bit of Z is
taken as the output of IdealF,Sim,Z (κ).

28 Defining Multi-Party Computation

Definition 2.4. A protocol π UC-securely realizes F if for all real-world
adversaries A there exists a simulator Sim with corrupt(A) = corrupt(Sim)
such that, for all environments Z:��� Pr[Realπ,A,Z (κ) = 1] − Pr[IdealF,Sim,Z (κ) = 1]

��� is negligible (in κ).
Since the definition quantifies over all environments, we can always

consider absorbing the adversary A into the environment Z , so that what is
left over is the so-called “dummy adversary” (which simply forwards protocol
messages as instructed by Z).

In other (non UC-composable) security models, the ideal-world adversary
(simulator) can depend arbitrarily on the real-world adversary. In particular,
the simulator can do things like internally run the adversary and repeatedly
rewind that adversary to a previous internal state. Many protocols are proven
in these weaker model where the composability may be restricted. Sequential
composition security (i.e., security for protocols which call functionalities in a
sequential manner) holds for all protocols discussed in this book.

In the UC model such rewinding is not possible since the adversary
can be assumed to be absorbed into the environment, and the simulator is
not allowed to depend on the environment. Rather, the simulator must be a
straight-line simulator: whenever the environment wishes to send a protocol
message, the simulator must reply immediately with a simulated response.
A straight-line simulator must generate the simulated transcript in one pass,
whereas the previous definitions allowed for the simulated transcript or view to
be generated without any restrictions. Assuming the other primitives such as
oblivious transfer (Section 2.4) and commitments (Section 2.4) used in these
protocols provide UC-security, the malicious secure protocols described in
this book are all UC-secure.

2.4 Specific Functionalities of Interest

Here, we define several functionalities that have been identified as particularly
useful building blocks for building MPC protocols.

Oblivious Transfer. Oblivious Transfer (OT) is an essential building block
for secure computation protocols. It is theoretically equivalent to MPC as

2.4. Specific Functionalities of Interest 29

Parameters:

1. Two parties: Sender S and Receiver R.
S has two secrets, x0, x1 ∈ {0, 1}n, and R has a selection bit, b ∈ {0, 1}.

Functionality:

• R sends b to F OT, S sends x0, x1 to F OT.

• R receives xb, S receives ⊥.

Figure 2.1: 1-out-of-2 OT functionality FOT.

shown by Kilian (1988): given OT, one can build MPC without any additional
assumptions, and, similarly, one can directly obtain OT from MPC.

The standard definition of 1-out-of-2 OT involves two parties, a Sender S
holding two secrets x0, x1 and a receiver R holding a choice bit b ∈ {0, 1}. OT
is a protocol allowing R to obtain xb while learning nothing about the “other”
secret x1−b. At the same time, S does not learn anything at all. More formally:

Definition 2.5. A 1-out-of-2 OT is a cryptographic protocol securely imple-
menting the functionality F OT of Figure 2.1.

Many variants of OT may be considered. A natural variant is 1-out-of-k
OT, in which S holds k secrets, and R has a choice selector in {0, . . . , k − 1}.
We discuss protocols for implementing OT efficiently in Section 3.7.

Commitment. Commitment is a fundamental primitive in many crypto-
graphic protocols. A commitment scheme allows a sender to commit to a
secret value, and reveal it at some later time to a receiver. The receiver should
learn nothing about the committed value before it is revealed by the sender (a
property referred to as hiding), while the sender should not be able to change
its choice of value after committing (the binding property).

Commitment is rather simple and inexpensive in the random oracle model.
To commit to x, simply choose a random value r ∈R {0, 1}κ and publish the
value y = H(x‖r). To later reveal, simply announce x and r .

30 Defining Multi-Party Computation

Parameters:

1. Two parties: Sender S and Receiver R. S has a string s ∈ {0, 1}n.

Functionality:

• S sends s to F Comm. F Comm sends committed to R.

• At some later time, S sends open to F Comm, and F Comm sends s to R.

Figure 2.2: Commitment functionality F Comm.

Parameters:

1. Two parties: Prover P and VerifierV.

Functionality:

• P sends (C, x) to F zk, where C : {0, 1}n → {0, 1} is a Boolean
circuit with 1 output bit, and x ∈ {0, 1}n. If C(x) = 1 then F zk sends
(proven, C) toV. Otherwise, it sends ⊥ toV.

Figure 2.3: Zero-knowledge proof functionality F zk.

Definition 2.6. Commitment is a cryptographic protocol securely implement-
ing the functionality F Comm of Figure 2.2.

Zero-Knowledge Proof. A zero-knowledge (ZK) proof allows a prover to
convince a verifier that it knows x such that C(x) = 1, without revealing any
further information about x. Here C is a public predicate.

As a simple example, suppose G is a graph and that Alice knows a 3-
coloring χ for G. Then Alice can use a ZK proof to convince Bob that G is
3-colorable. She constructs a circuit CG that interprets its input as an encoding
of a 3-coloring and checks whether it is a legal 3-coloring of G. She uses
(CG, χ) as input to the ZK proof. From Bob’s point of view, he receives output
(proven, CG) if and only if Alice was able to provide a valid 3-coloring of G.
At the same time, Alice knows that Bob learned nothing about her 3-coloring

2.5. Further Reading 31

χ other than the fact that some legal χ exists.

Definition 2.7. A zero-knowledge proof is a cryptographic protocol imple-
menting the functionality F zk of Figure 2.3.

There are several variants of ZK proofs identified in the literature. Our
specific variant is more precisely a zero-knowledge argument of knowledge.
The distinctions between these variants are not crucial for the level of detail
we explore in this book.

2.5 Further Reading

The real-ideal paradigm was first applied in the setting of MPC by Goldwasser
et al. (1985), for the special case of zero-knowledge. Shortly thereafter the
definition was generalized to arbitrary MPC by Goldreich et al. (1987). These
definitions contain the important features of the real-ideal paradigm, but
resulted in a notion of security (against malicious adversaries) that was not
preserved under composition. In other words, a protocol could be secure
according to these models when executed in isolation, but may be totally
insecure when two protocol instances are run concurrently.

The definition of security that we have sketched in this book is the Universal
Composition (UC) framework of Canetti (2001). Protocols proven secure in
the UC framework have the important composition property described in
Section 2.3.4, which in particular guarantees security of a protocol instance
no matter what other protocols are executing concurrently. While the UC
framework is the most popular model with this property, there are other models
with similar guarantees (Pfitzmann and Waidner, 2000; Hofheinz and Shoup,
2011). The details of all such security models are extensive and subtle. However,
a significantly simpler model is presented by Canetti et al. (2015), which is
equivalent to the full UC model for the vast majority of cases. Some of the
protocols we describe are secure in the random oracle model. Canetti et al.
(2014) describe how to incorporate random oracles into the UC framework.

Our focus in this book is on the most popular security notions — namely,
semi-honest security and malicious security. The literature contains many
variations on these security models, and some are a natural fit for real-world
applications. We discuss some alternative security models in Chapter 7.

