
3
Fundamental MPC Protocols

In this chapter we survey several important MPC approaches, covering the
main protocols and presenting the intuition behind each approach.

All of the approaches discussed can be viewed as a form of computing
under encryption, or, more specifically, as secret-sharing the input data and
computing on the shares. For example, an encryption Enck(m) of a message m
with a key k can be seen as secret-sharing m, where one share is k and the other
is Enck(m). We present several fundamental protocols illustrating a variety
of generic approaches to secure computation, as summarized in Table 3.1.
All of the protocols of this section target the semi-honest adversary model
(Section 2.3.2). We discuss malicious-secure variants in Chapter 6. All of these

protocol # parties # rounds circuit
Yao’s GC (Section 3.1) 2 constant Boolean
GMW (Section 3.2) many circuit depth Boolean or arithmetic
BGW (Section 3.3) many circuit depth Boolean or arithmetic
BMR (Section 3.5) many constant Boolean
GESS (Section 3.6) 2 constant Boolean formula

Table 3.1: Summary of semi-honest MPC protocols discussed in this chapter.

32

3.1. Yao’s Garbled Circuits Protocol 33

protocols build on oblivious transfer, which we discuss how to implement
efficiently in Section 3.7.

3.1 Yao’s Garbled Circuits Protocol

Yao’s Garbled Circuits protocol (GC) is the most widely known and celebrated
MPC technique. It is usually seen as best-performing, andmany of the protocols
we cover build on Yao’s GC. While not having the best known communication
complexity, it runs in constant rounds and avoids the costly latency associated
with approaches, such as GMW (described in Section 3.2), where the number
of communication rounds scales with the circuit depth.

3.1.1 GC Intuition

The main idea behind Yao’s GC approach is quite natural. Recall, we wish to
evaluate a given function F (x, y) where party P1 holds x ∈ X and P2 holds
y ∈ Y . Here X and Y are the respective domains for the inputs of P1 and P2.

Function as a look-up table. First, let’s consider a function F for which the
input domain is small and we can efficiently enumerate all possible input pairs,
(x, y). The function F can be represented as a look-up table T , consisting of
|X | · |Y | rows, Tx,y = 〈F (x, y)〉. The output of F (x, y) is obtained simply by
retrieving Tx,y from the corresponding row.

This gives us an alternative (and much simplified!) view of the task at
hand. Evaluating a look-up table can be done as follows. P1 will encrypt T
by assigning a randomly-chosen strong key to each possible input x and y.
That is, for each x ∈ X and each y ∈ Y , P1 will choose kx ∈R {0, 1}κ and
ky ∈R {0, 1}κ . It will then encrypt T by encrypting each element Tx,y of T
with both keys kx and ky , and send the encrypted (and randomly permuted!)
table 〈Enckx,ky (Tx,y)〉 to P2.

Now our task is to enable P2 to decrypt (only) the entry Tx,y corresponding
to players’ inputs. This is done by having P1 send to P2 the keys kx and ky . P1
knows its input x, and hence simply sends key kx to P2. The key ky is sent to
P2 using a 1-out-of-|Y | Oblivious Transfer (Section 2.4). Once P2 receives kx
and ky , it can obtain the output F (x, y) by decrypting Tx,y using those keys.
Importantly, no other information is obtained by P2. This is because P2 only

34 Fundamental MPC Protocols

has a single pair of keys, which can only be used to open (decrypt) a single
table entry. We stress that, in particular, it is important that neither partial key,
kx or ky , by itself can be used to obtain partial decryptions or even determine
whether the partial key was used in the obtaining a specific encryption.1

Point-and-Permute. A careful reader may wonder how P2 knows which row
of the table T to decrypt, as this information is dependent on the inputs of both
parties, and, as such, is sensitive.

The simplest way to address this is to encode some additional information
in the encrypted elements ofT . For example, P1 may append a string of σ zeros
to each row of T . Decrypting the wrong row will produce an entry which has
low probability (p = 1

2σ) of ending with σ zeros, and hence will be rejected
by P2.

While the above approach works, it is inefficient for P2, who expects to
need to decrypt half of the rows of the table T . A much better approach, often
called point-and-permute,2 was introduced by Beaver et al. (1990). The idea is
to interpret part of the key (namely, the last dlog |X |e bits of the first key and
the last dlog |Y |e bits of the second key) as a pointer to the permuted table T ,
where the encryption will be placed. To avoid collisions in table row allocation,
P1 must ensure that the pointer bits don’t collide within the space of keys kx or
within the space of ky; this can be done in a number of ways. Finally, strictly
speaking, key size must be maintained to achieve the corresponding level of
security. As a consequence, rather than viewing key bits as a pointer, players
will append the pointer bits to the key and maintain the desired key length.

In the subsequent discussions, we assume that the evaluator knows which
row to decrypt. In protocol presentations, we may or may not explicitly include
the point-and-permute component, depending on context.

1Consider a counter-example. Suppose P2 was able to determine that a key kx that it
received from P1 was used in encrypting rx rows. Because some input combinations may be
invalid, the encrypted look-up table T may have a unique number of rows relying on kx , which
will reveal x to P2, violating the required security guarantees.

2This technique was not given a name by Beaver et al. (1990). Rather, this name came
to be widely used by the community around 2010, as GC research progressed and need for a
name arose. This technique is different from the permute and point technique introduced and
coined in the information-theoretic garbled circuit construction of Kolesnikov (2005), which
we discuss in Section 3.6.

3.1. Yao’s Garbled Circuits Protocol 35

Managing look-up table size. Clearly, the above solution is inefficient as it
scales linearly with the domain size of F . At the same time, for small functions,
such as those defined by a single Boolean circuit gate, the domain has size 4,
so using a look-up table is practical.

The next idea is to represent F as a Boolean circuit C and evaluate each
gate using look-up tables of size 4. As before, P1 generates keys and encrypts
look-up tables, and P2 applies decryption keys without knowing what each key
corresponds to. However, in this setting, we cannot reveal the plaintext output
of intermediate gates. This can be hidden by making the gate output also a key
whose corresponding value is unknown to the evaluator, P2.

For each wire wi of C, P1 assigns two keys k0
i and k1

i , corresponding to
the two possible values on the wire. We will refer to these keys as wire labels,
and to the plaintext wire values simply as wire values. During the execution,
depending on the inputs to the computation, each wire will be associated with
a specific plaintext value and a corresponding wire label, which we will call
active value and active label. We stress that the evaluator can know only the
active label, but not its corresponding value, and not the inactive label.

Then, going through C, for each gate G with input wires wi and wj , and
output wire wt , P1 builds the following encrypted look-up table:

TG =

©«

Enck0
i ,k

0
j
(kG(0,0)t)

Enck0
i ,k

1
j
(kG(0,1)t)

Enck1
i ,k

0
j
(kG(1,0)t)

Enck1
i ,k

1
j
(kG(1,1)t)

ª®®®®®®¬
For example, if G is an AND gate, the look-up table will be:

TG =

©«
Enck0

i ,k
0
j
(k0

t)
Enck0

i ,k
1
j
(k0

t)
Enck1

i ,k
0
j
(k0

t)
Enck1

i ,k
1
j
(k1

t)

ª®®®®®®¬
Each cell of the look-up table encrypts the label corresponding to the

output computed by the gate. Crucially, this allows the evaluator P2 to obtain
the intermediate active labels on internal circuit wires and use them in the
evaluation of F under encryption without ever learning their semantic value.

36 Fundamental MPC Protocols

P1 permutes the entries in each of the look-up tables (usually called garbled
tables or garbled gates), and sends all the tables to P2. Additionally, P1 sends
(only) the active labels of all wires corresponding to the input values to P2. For
input wires belonging to P1’s inputs to F , this is done simply by sending the
wire label keys. For wires belonging to P2’s inputs, this is done via 1-out-of-2
Oblivious Transfer.

Upon receiving the input keys and garbled tables, P2 proceeds with the
evaluation. As discussed above, P2 must be able to decrypt the correct row
of each garbled gate. This is achieved by the point-and-permute technique
described above. In our case of a 4-row garbled table, the point-and-permute
technique is particularly simple and efficient — one pointer bit is needed for
each input, so there are two total pointer bits added to each entry in the garbled
table. Ultimately, P2 completes evaluation of the garbled circuit and obtains
the keys corresponding to the output wires of the circuit. These could be sent
to P1 for decryption, thus completing the private evaluation of F .

We note that a round of communication may be saved and sending the
output labels by P2 for decryption by P1 can be avoided. This can be done
simply by P1 including the decoding tables for the output wires with the garbled
circuit it sends. The decoding table is simply a table mapping each label on
each output wire to its semantics (i.e. the corresponding plaintext value. Now,
P2 obtaining the output labels will look them up in the decoding table and
obtain the output in plaintext.

At an intuitive level, at least, it is easy to see that this circuit-based
construction is secure in the semi-honest model. Security against a corrupt
P1 is easy, since (other than the OT, which we assume has been separately
shown to satisfy the OT security definition) that party receives no messages
in the protocol! For a corrupt P2, security boils down to the observation that
the evaluator P2 never sees both labels for the same wire. This is obviously
true for the input wires, and it holds inductively for all intermediate wires
(knowing only one label on each incoming wire of the gate, the evaluator
can only decrypt one ciphertext of the garbled gate). Since P2 does not know
the correspondence between plaintext values and the wire labels, it has no
information about the plaintext values on the wires, except for the output wires
where the association between labels and values is explicitly provided by P1.
To simulate P2’s view, the simulator SimP2 chooses random active labels for

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 37

each wire, simulates the three “inactive” ciphertexts of each garbled gate as
dummy ciphertexts, and produces decoding information that decodes the active
output wires to the function’s output.

3.1.2 Yao’s GC Protocol

Figure 3.1 formalizes Yao’s gate generation, and Figure 3.2 summarizes Yao’s
GC protocol. For simplicity of presentation, we describe the protocol variant
based on Random Oracle (defined in Section 2.2), even though a weaker
assumption (the existence of pseudo-random functions) is sufficient for Yao’s
GC construction. The Random Oracle, denoted by H, is used in implementing
garbled row encryption. We discuss different methods of instantiating H
in Section 4.1.4. The protocol also uses Oblivious Transfer, which requires
public-key cryptography.

For each wire label, a pointer bit, pi, is added to the wire label key
following the point-and-permute technique described in Section 3.1.1. The
pointer bits leak no information since they are selected randomly, but they
allow the evaluator to determine which row in the garbled table to decrypt,
based on the pointer bits for the two active wires it has for the inputs. In
Section 4.1 we discuss several ways for making Yao’s GC protocol more
efficient, including reducing the size of the garbled table to just two ciphertexts
per gate (Section 4.1.3) and enabling XOR gates to be computed without
encryption (Section 4.1.2).

3.2 Goldreich-Micali-Wigderson (GMW) Protocol

As noted before, computation under encryption can be naturally viewed as
operating on secret-shared data. In Yao’s GC, the secret sharing of the active
wire value is done by having one player (generator) hold two possible wire
labels w0

i ,w
1
i , and the other player (evaluator) hold the active label wb

i . In the
GMW protocol (Goldreich et al., 1987; Goldreich, 2004), the secret-sharing
of the wire value is more direct: the players hold additive shares of the active
wire value.

The GMW protocol (or just “GMW”) naturally generalizes to more than
two parties, unlike Yao’s GC, which requires novel techniques to generalize to
more than two parties (see Section 3.5).

38 Fundamental MPC Protocols

Parameters:
Boolean circuit C implementing function F , security parameter κ.

GC generation:

1. Wire Label Generation. For each wire wi of C, randomly choose wire
labels,

wb
i = (kb

i ∈R {0, 1}κ, pbi ∈R {0, 1}),
such that pbi = 1 − p1−b

i .

2. Garbled Circuit Construction. For each gate Gi of C in topological
order:

(a) Assume Gi is a 2-input Boolean gate implementing function gi:
wc = gi(wa,wb), where input labels are w0

a = (k0
a, p0

a),w1
a =

(k1
a, p1

a),w0
b
= (k0

b
, p0

b
),w1

b
= (k1

b
, p1

b
), and the output labels are

w0
c = (k0

c, p0
c),w1

c = (k1
c, p1

c).
(b) Create Gi’s garbled table. For each of 22 possible combinations of

Gi’s input values va, vb ∈ {0, 1}, set

eva,vb = H(kva
a | | k

vb
b
| | i) ⊕ w

gi (va,vb)
c

Sort entries e in the table by the input pointers, placing entry eva,vb
in position 〈pvaa , pvb

b
〉.

3. Output Decoding Table. For each circuit-output wire wi (the output of
gate G j) with labels w0

i = (k0
i , p0

i),w1
i = (k1

i , p1
i), create garbled output

table for both possible wire values v ∈ {0, 1}. Set

ev = H(kv
i | | “out” | | j) ⊕ v

(Because we are xor-ing with a single bit, we just use the lowest bit of the
output of H for generating the above ev.) Sort entries e in the table by
the input pointers, placing entry ev in position pvi . (There is no conflict,
since p1

i = p0
i ⊕ 1.)

Figure 3.1: Yao’s Garbled Circuit protocol: GC generation

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 39

Parameters: Parties P1 and P2 with inputs x ∈ {0, 1}n and y ∈ {0, 1}n
respectively. Boolean circuit C implementing function F .

Protocol:

1. P1 plays the role of GC generator and runs the algorithm of Figure 3.1.
P1 then sends the obtained GC Ĉ (including the output decoding table)
to P2.

2. P1 sends to P2 active wire labels for the wires on which P1 provides
input.

3. For each wire wi on which P2 provides input, P1 and P2 execute an
Oblivious Transfer (OT) where P1 plays the role of the Sender, and P2
plays the role of the Receiver:

(a) P1’s two input secrets are the two labels for the wire, and P2’s
choice-bit input is its input on that wire.

(b) Upon completion of the OT, P2 receives active wire label on the
wire.

4. P2 evaluates received Ĉ gate-by-gate, starting with the active labels on
the input wires.

(a) For gate Gi with garbled table T = (e0,0, ...e1,1) and active input
labels wa = (ka, pa),wb = (kb, pb), P2 computes active output
label wc = (kc, pc):

wc = H(ka | | kb | | i) ⊕ epa,pb

5. Obtaining output using output decoding tables. Once all gates of Ĉ are
evaluated, using “out” for the second key to decode the final output
gates, P2 obtains the final output labels which are equal to the plaintext
output of the computation. P2 sends the obtained output to P1, and they
both output it.

Figure 3.2: Yao’s Garbled Circuit Protocol

40 Fundamental MPC Protocols

3.2.1 GMW Intuition

The GMW protocol can work both on Boolean and arithmetic circuits. We
present the two-party Boolean version first, and then briefly explain how the
protocol can be generalized to more than two parties. As with Yao’s protocol,
we assume players P1 with input x and P2 with input y have agreed on the
Boolean circuit C representing the computed function F (x, y).

The GMW protocol proceeds as follows. For each input bit xi ∈ {0, 1} of
x ∈ {0, 1}n, P1 generates a random bit ri ∈R {0, 1} and sends all ri to P2. Next,
P1 obtains a secret sharing of each xi between P1 and P2 by setting its share to
be xi ⊕ ri . Symmetrically, P2 generates random bit masks for its inputs yi and
sends the masks to P1, secret sharing its input similarly.

P1 and P2 proceed in evaluating C gate by gate. Consider gate G with input
wires wi and wj and output wire wk . The input wires are split into two shares,
such that s1

x ⊕ s2
x = wx . Let P1 holds shares s1

i and s1
j on wi and wj , and P2

hold shares s2
i and s2

j on the two wires. Without loss of generality, assume C
consists of NOT, XOR and AND gates.

Both NOT and XOR gates can be evaluated without any interaction. A NOT
gate is evaluated by P1 flipping its share of the wire value, which flips the
shared wire value. An XOR gate on wires wi and wj is evaluated by players
xor-ing the shares they already hold. That is, P1 computes its output share as
s1
k
= s1

i ⊕ s1
j , and P2 correspondingly computes its output share as s2

k
= s2

i ⊕ s2
j .

The computed shares, s1
k
, s2

k
, indeed are shares of the active output value:

s1
k
⊕ s2

k
= (s1

i ⊕ s1
j) ⊕ (s2

i ⊕ s2
j) = (s1

i ⊕ s2
i) ⊕ (s1

j ⊕ s2
j) = wi ⊕ wj .

Evaluating an AND gate requires interaction and uses 1-out-of-4 OT a
basic primitive. From the point of view of P1, its shares s1

i , s
1
j are fixed, and P2

has two Boolean input shares, which means there are four possible options for
P2. If P1 knew P2’s shares, then evaluating the gate under encryption would
be trivial: P1 can just reconstruct the active input values, compute the active
output value and secret-share it with P2. While P1 cannot do that, it can do the
next best thing: prepare such a secret share for each of P2’s possible inputs,
and run 1-out-of-4 OT to transfer the corresponding share. Specifically, let

S = Ss1
i ,s

1
j
(s2

i , s
2
j) = (s1

i ⊕ s2
i) ∧ (s1

j ⊕ s2
j)

be the function computing the gate output value from the shared secrets on
the two input wires. P1 chooses a random mask bit r ∈R {0, 1} and prepares a

3.2. Goldreich-Micali-Wigderson (GMW) Protocol 41

table of OT secrets:

TG =
©«
r ⊕ S(0, 0)
r ⊕ S(0, 1)
r ⊕ S(1, 0)
r ⊕ S(1, 1)

ª®®®®¬
Then P1 and P2 run an 1-out-of-4 OT protocol, where P1 plays the role of the
sender, and P2 plays the role of the receiver. P1 uses table rows as each of the
four input secrets, and P2 uses its two bit shares as the selection to choose the
corresponding row. P1 keeps r as its share of the gate output wire value, and
P2 uses the value it receives from the OT execution.

Because of the way the OT inputs are constructed, the players obtain a
secret sharing of the gate output wire. At the same time, it is intuitively clear
that the players haven’t learned anything about the other player’s inputs or the
intermediate values of the computation. This is because effectively only P2
receives messages, and by the OT guarantee, it learns nothing about the three
OT secrets it did not select. The only thing it learns is its OT output, which
is its share of a random sharing of the output value and therefore leaks no
information about the plaintext value on that wire. Likewise, P1 learns nothing
about the selection of P2.

After evaluating all gates, players reveal to each other the shares of the
output wires to obtain the output of the computation.

Generalization to more than two parties. We now sketch how to generalize
this to the setting where n players P1,P2, . . . ,Pn evaluate a boolean circuit F .
As before, player Pj secret-shares its input by choosing ∀i , j, ri ∈R {0, 1},
and sending ri to each Pi . The parties P1,P2, . . . ,Pn proceed by evaluating C
gate-by-gate. They evaluate each gate G as follows:

• For an XOR gate, the players locally add their shares. Like the two-party
case, no interaction is required and correctness and security are assured.

• For an AND gate c = a ∧ b, let a1, . . . , an, b1, . . . , bn denote the shares

42 Fundamental MPC Protocols

of a, b respectively held by the players. Consider the identity

c = a ∧ b = (a1 ⊕ · · · ⊕ an) ∧ (b1 ⊕ · · · ⊕ bn)

=

(
n⊕
i=1

ai ∧ bi

)
⊕

(⊕
i,j

ai ∧ bj

)
Each playerPj computes aj∧bj locally to obtain a sharing of

⊕n
i=1 ai∧bi .

Further, each pair of players Pi , Pj jointly computes the shares of ai ∧ bj

as described above in the two-party GMW. Finally, each player outputs
the XOR of all obtained shares as the sharing of the result a ∧ b.

3.3 BGW protocol

One of the first multi-party protocols for secure computation is due to Ben-Or,
Goldwasser, and Wigderson (Ben-Or et al., 1988), and is known as the “BGW”
protocol. Another somewhat similar protocol of Chaum, Crépau, and Damgård
was published concurrently (Chaum et al., 1988) with BGW, and the two
protocols are often considered together. For concreteness, we present here the
BGW protocol for n parties, which is somewhat simpler.

The BGW protocol can be used to evaluate an arithmetic circuit over a
field F, consisting of addition, multiplication, and multiplication-by-constant
gates. The protocol is heavily based on Shamir secret sharing (Shamir, 1979),
and it uses the fact that Shamir secret shares are homomorphic in a special
way—the underlying shared value can be manipulated obliviously, by suitable
manipulations to the individual shares.

For v ∈ F we write [v] to denote that the parties hold Shamir secret shares
of a value v. More specifically, a dealer chooses a random polynomial p of
degree at most t, such that p(0) = v. Each party Pi then holds value p(i) as
their share. We refer to t as the threshold of the sharing, so that any collection
of t shares reveals no information about v.

The invariant of the BGW protocol is that for every wire w in the arithmetic
circuit, the parties hold a secret-sharing [vw] of the value vw on that wire. Next,
we sketch the protocol with a focus on maintaining this invariant.

Input wires. For an input wire belonging to party Pi, that party knows the
value v on that wire in the clear, and distributes shares of [v] to all the parties.

3.3. BGW protocol 43

Addition gate. Consider an addition gate, with input wires α, β and output
wire γ. The parties collectively hold sharings of incoming wires [vα] and [vβ],
and the goal is to obtain a sharing of [vα + vβ]. Suppose the incoming sharings
correspond to polynomials pα and pβ, respectively. If each party Pi locally
adds their shares pα(i) + pβ(i), then the result is that each party holds a point
on the polynomial pγ(x)

def
= pα(x) + pβ(x). Since pγ also has degree at most t,

these new values comprise a valid sharing pγ(0) = pα(0) + pβ(0) = vα + vβ .
Note that addition gates require no communication among the parties. All

steps are local computation. The same idea works to multiply a secret-shared
value by a public constant — each party simply locally multiplies their share
by the constant.

Multiplication gate. Consider a multiplication gate, with input wires α, β
and output wire γ. The parties collectively hold sharings of incoming wires
[vα] and [vβ], and the goal is to obtain a sharing of the product [vα · vβ]. As
above, the parties can locally multiply their individual shares, resulting in each
party holding a point on the polynomial q(x) = pα(x) · pβ(x). However, in this
case the resulting polynomial may have degree as high as 2t which is too high.

In order to fix the excessive degree of this secret sharing, the parties engage
in a degree-reduction step. Each party Pi holds a value q(i), where q is a
polynomial of degree at most 2t. The goal is to obtain a valid secret-sharing of
q(0), but with correct threshold.

The main observation is that q(0) can be written as a linear function of the
party’s shares. In particular,

q(0) =
2t+1∑
i=1

λiq(i)

where the λi terms are the appropriate Lagrange coefficients. Hence the
degree-reduction step works as follows:

1. Each party3 Pi generates and distributes a threshold-t sharing of [q(i)].
To simplify the notation, we do not give names to the polynomials that
underly these shares. However, it is important to keep in mind that
each party Pi chooses a polynomial of degree at most t whose constant
coefficient is q(i).

3Technically, only 2t + 1 parties need to do this.

44 Fundamental MPC Protocols

2. The parties compute [q(0)] = ∑2t+1
i=1 λi[q(i)], using local computations.

Note that the expression is in terms of addition and multiplication-by-
constant applied to secret-shared values.

Since the values [q(i)] were shared with threshold t, the final sharing of [q(0)]
also has threshold t, as desired.

Note that multiplication gates in the BGW protocol require communica-
tion/interaction, in the form of parties sending shares of [q(i)]. Note also that
we require 2t + 1 ≤ n, since otherwise the n parties do not collectively have
enough information to determine the value q(0), as q may have degree 2t. For
that reason, the BGW protocol is secure against t corrupt parties, for 2t < n
(i.e., an honest majority).

Output wires. For an output wire α, the parties will eventually hold shares
of the value [vα] on that wire. Each party can simply broadcast its share of this
value, so that all parties can learn vα.

3.4 MPC From Preprocessed Multiplication Triples

A convenient paradigm for constructing MPC protocols is to split the problem
into a pre-processing phase (before the parties’ inputs are known) and an online
phase (after the inputs are chosen). The pre-processing phase can produce
correlated values for the parties, which they can later “consume” in the online
phase. This paradigm is also used in some of the leading malicious-secure
MPC protocols discussed in Chapter 6.

Intuition. To get an idea of how to defer some of the protocol effort to
the pre-processing phase, recall the BGW protocol. The only real cost in
the protocol is the communication that is required for every multiplication
gate. However, it is not obvious how to move any of the related costs to a
pre-processing phase, since the costs are due to manipulations of secret values
that can only be determined in the online phase (i.e., they are based on the
circuit inputs). Nonetheless, Beaver (1992) showed a clever way to move the
majority of the communication to the pre-processing phase.

A Beaver triple (or multiplication triple) refers to a triple of secret-shared
values [a], [b], [c] where a and b are randomly chosen from the appropriate

3.4. MPC From Preprocessed Multiplication Triples 45

field, and c = ab. In an offline phase, such Beaver triples can be generated
in a variety of ways, such as by simply running the BGW multiplication
subprotocol on random inputs. One Beaver triple is then “consumed” for each
multiplication gate in the eventual protocol.

Consider a multiplication gate with input wires α, β. The parties hold
secret sharings of [vα] and [vβ]. To carry out the multiplication of vα and vβ
using a Beaver triple [a], [b], [c], the parties do the following:

1. Using local computation, compute [vα−a] and publicly open d = vα−a
(i.e., all parties announce their shares). While this value depends on the
secret value vα, it is masked by the random value a and therefore reveals
no information about vα.4

2. Using local computation, compute [vβ − b] and publicly open e = vβ − b.

3. Observe the following identity:

vαvβ = (vα − a + a)(vβ − b + b)
= (d + a)(e + b)
= de + db + ae + ab

= de + db + ae + c

Since d and e are public, and the parties hold sharings of [a], [b], [c],
they can compute a sharing of [vαvβ] by local computation only:

[vαvβ] = de + d[b] + e[a] + [c]

Using this technique, amultiplication can be performed using only two openings
plus local computation. Overall, each party must broadcast two field elements
per multiplication, compared to n field elements (across private channels) in
the plain BGW protocol. While this comparison ignores the cost of generating
the Beaver triples in the first place, there are methods for generating triples in
a batch where the amortized cost of each triple is a constant number of field
elements per party (Beerliová-Trubíniová and Hirt, 2008).

4Since a is used as essentially a one-time pad (and b similarly below), this triple [a], [b], [c]
cannot be reused again in a different multiplication gate.

46 Fundamental MPC Protocols

Abstraction. While the BGW protocol (specifically, its degree-reduction
step) deals with the details of Shamir secret shares, the Beaver-triples approach
conveniently abstracts these away. In fact, it works as long as the parties have
an abstract “sharing mechanism” [v] with the following properties:

• Additive homomorphism: Given [x] and [y] and a public value z, parties
can obtain any of [x + y], [x + z], [xz], without interaction.

• Opening: Given [x], parties can choose to reveal x to all parties.

• Privacy: An adversary (from whatever class of adversaries is being
considered) can get no information about x from [x].

• Beaver triples: For each multiplication gate, the parties have a random
triple [a], [b], [c] where c = ab.

• Random input gadgets: For each input wire belonging to party Pi, the
parties have a random [r], where r is known only to Pi. During the
protocol, when Pi chooses its input value x for this wire, it can announce
δ = x − r to all parties (leaking nothing about x), and they can locally
compute [x] = [r] + δ from the homomorphic properties.

As long as these properties are true of an abstract sharing mechanism,
the Beaver-triples approach is secure. In fact, the paradigm is also secure in
the presence of malicious adversaries, as long as the opening and privacy
properties of the sharing mechanism hold against such adversaries. Specifically,
a malicious adversary cannot falsify the opening of a shared value. We use
this fact later in Section 6.6.

Instantiations. Clearly Shamir secret sharing gives rise to an abstract sharing
scheme [·] that satisfies the above properties with respect to adversaries who
corrupt at most t < n/2 parties.

Another suitable method of sharing is simple additive sharing over a field F.
In additive sharing, [v] signifies that each party Pi holds vi where

∑n
i=1 vi = v.

This mechanism satisfies the appropriate homomorphic properties, and is
secure against n − 1 corrupt parties. When using F = {0, 1}, we obtain an
offline-online variant of the GMW protocol (since the field operations in this
case correspond to AND and XOR). Of course, an arbitrary F is possible as
well, leading to a version of GMW for arithmetic circuits.

3.5. Constant-Round Multi-Party Computation: BMR 47

3.5 Constant-Round Multi-Party Computation: BMR

After Yao’s (two-party) GC protocol was proposed, several multi-party pro-
tocols appeared, including Goldreich-Micali-Wigderson (GMW) (Goldreich,
2004; Goldreich et al., 1987), presented in detail above in Section 3.2, Ben
Or-Goldwasser-Wigderson (BGW) (Ben-Or et al., 1988), Chaum-Crepeau-
Damgård (CCD) (Chaum et al., 1988). All of these protocols have a number
of rounds linear in the depth of the circuit C computing F . The Beaver-Micali-
Rogaway (BMR) protocol (Beaver et al., 1990) runs in a constant (in the depth
of the circuit C) number of rounds, while achieving security against any t < n
number of corruptions among the n participating parties.

3.5.1 BMR Intuition

The BMR protocols adapt the main idea of Yao’s GC to a multi-party setting.
GC is chosen as a starting point due to its round-efficiency. However, a naïve
attempt to port the GC protocol from the 2PC into the MPC setting gets stuck
at the stage of sending the generated GC to the evaluators. Indeed, the circuit
generator knows all the secrets (wire label correspondences), and if it colludes
with any of the evaluators, the two colluding parties can learn the intermediate
wire values and violate the security guarantees of the protocol.

The basic BMR idea is to perform a distributed GC generation, so that no
single party (or even a proper subset of all parties) knows the GC generation
secrets – the label assignment and correspondence. This GC generation can be
done in parallel for all gates using MPC. This is possible by first generating
(in parallel) all wire labels independently, and then independently and in
parallel generating garbled gate tables. Because of parallel processing for all
gates and wires, the number of communication rounds for the GC generation
is independent of the depth of the computed circuit C. As a result, the GC
generation circuit CGEN is constant-depth for all computed circuits C (once the
security parameter κ is fixed). Even if the parties perform MPC evaluation of
CGEN that depends on the depth of CGEN, the overall BMR protocol will still
have constant rounds overall.

The MPC output, the GC produced by securely evaluating CGEN, may be
delivered to a designated player, say P1, who will then evaluate it similarly to
Yao’s GC. The final technicality here is how to deliver the active input labels

48 Fundamental MPC Protocols

to P1. There are several ways how this may be achieved, depending on how
exactly the MPC GC generation proceeded. Perhaps, it is conceptually simplest
to view this as part of the GC generation computation.

In concrete terms, the above approach is not appealing due to potentially
high costs of distributed generation of encryption tables, requiring the garbled
row encryption function (instantiated as a PRF or hash function) evaluation
inside MPC. Several protocols were proposed, which allow the PRF/hash
evaluation to be extracted from inside the MPC and instead be done locally
by the parties while providing the output of PRF/hash into the MPC. The
underlying idea of such an approach is to assign different portions of each
label to be generated by different players. That is, a wire wa’s labels wv

a are a
concatenation of sublabels wv

a, j each generated by Pj . Then, for a gate Gi with
input labels wva

a ,w
vb
b

and the output label wvc
c , the garbled row corresponding

to input values va, vb and output value vc can simply be:

eva,vb = wvc
c

⊕
j=1..n
(F(i,wva

a, j) ⊕ F(i,wvb
b, j
)), (3.1)

where F is a PRF, indexed by the gate index, extending κ + 1 input bits into
n · (κ + 1) bits.

The generation of the garbled table row is almost entirely done locally
by each party. Each Pj computes F(i,wva

a, j) ⊕ F(i,wvb
b, j
) and submits it to the

MPC, which simply xors all the values to produce the garbled row.
However, we are not quite done. Recall that the GC evaluator P1 will

reconstruct active labels. A careful reader would notice that knowledge of its
own contributed sublabel will allow it to identify which plaintext value the
active label corresponds to, violating the security guarantee.

The solution is for each player Pj to add a “flip” bit fa, j to each wire wa.
The xor of the n flip bits, fa =

⊕
j=1..n fa, j , determines which plaintext bit

corresponds to the wire label wv
a. The flip bits will be an additional input into

the garbling MPC. Now, with the addition of the flip bits, no subset of players
will know the wire flip bit, and hence even the recognition and matching of the
sublabel will not allow the evaluator to match the label to plaintext value, or to
compute the inactive label in full.

We sketch a concrete example of an efficient BMR garbling in Figure 3.3;
BMR evaluation is straightforward based on the garbling technique.

3.5. Constant-Round Multi-Party Computation: BMR 49

Parameters: Boolean circuit C implementing function F .
Let F : id, {0, 1}κ+1 7→ {0, 1}n ·(κ+1) be a PRF.

Players: P1, P2, ..., Pn with inputs x1, ..., xn ∈ {0, 1}k .

GC generation:
1. For each wire wi of C, each Pj randomly chooses wire sublabels,

wb
i, j = (kb

i, j, pbi, j) ∈R {0, 1}κ+1, such that pbi, j = 1 − p1−b
i, j , and flip-

bit shares fi, j ∈R {0, 1}. For each wire wi, Pj locally computes its
underlying-MPC input,

Ii, j = (F(i,w0
i, j), F(i,w1

i, j), p0
i, j, fi, j).

2. For each gate Gi of C in parallel, all players participate in n-party MPC
to compute the garbled table, taking as input all players’ inputs x1, ..., xn
as well as pre-computed values Ii, j , by evaluating the following function:

1. Assume Gi is a 2-input Boolean gate implementing function g,
with input wires wa,wb and output wire wc.

2. Compute pointer bits p0
a =

⊕
j=1..n p0

a, j, p0
b
=

⊕
j=1..n p0

b, j
, p0

c =⊕
j=1..n p0

c, j , and set p1
a = 1 − p0

a, p1
b
= 1 − p0

b
, p1

c = 1 − p0
c.

Similarly compute flip bits fa, fb, fc by xor-ing the corresponding
flip bit shares submitted by the parties. Amend the semantics of
the wires according to the flip bits by xor-ing fa, fb, fc in the label
index as appropriate (included in the next steps).

3. Create Gi’s garbled table. For each of 22 possible combinations of
Gi’s input values, va, vb ∈ {0, 1}, set

eva,vb = w
vc ⊕ fc
c

⊕
j=1..n
(F(i,wva ⊕ fa

a, j) ⊕ F(i,wvb ⊕ fb
b, j

)),

where w0
c = w0

c,1 | | . . . | | w
0
c,n | | p0

c,w
1
c = w1

c,1 | | . . . | | w
1
c,n | | p1

c .

Sort entries e in the table, placing entry eva,vb in position (pvaa , pvb
b
).

4. Output to P1 the computed garbled tables, as well as active wire
labels inputs of C, as selected by players’ inputs, x1, ..., xn.

Figure 3.3: BMR Multi-Party GC Generation

50 Fundamental MPC Protocols

3.6 Information-Theoretic Garbled Circuits

Yao’s GC and the GMW protocol present two different flavors of the use of
secret sharing in MPC. In this section, we discuss a third flavor, where the
secrets are shared not among players, but among wires. This construction
is also interesting because it provides information-theoretic security in the
OT-hybrid setting, meaning that no computational hardness assumptions are
used in the protocol beyond what is used in the underlying OT. An important
practical reason to consider IT GC is that it presents a trade-off between
communication bandwidth and latency: it needs to send less data than Yao
GC at the cost of additional communication rounds. While most research on
practical MPC focuses on low round complexity, we believe some problems
which require very wide circuits, such as those that arise in machine learning,
may benefit from IT GC constructions.

Information-theoretic constructions typically provide stronger security
at a higher cost. Surprisingly, this is not the case here. Intuitively, higher
performance is obtained because information-theoretic encryption allows the
encryption of a bit to be a single bit rather than a ciphertext whose length
scales with the security parameter. Further, information-theoretic encryption
here is done with bitwise XOR and bit shufflings, rather than with standard
primitives such as AES.

We present the Gate Evaluation Secret Sharing (GESS) scheme of
Kolesnikov (2005) (Kolesnikov (2006) provides details), which is the most
efficient information-theoretic analog of GC. The main result of Kolesnikov
(2005) is a two-party protocol for a Boolean formula F with communication
complexity ≈ ∑

d2
i , where di is the depth of the i-th leaf of F.

At a high level, GESS is a secret-sharing scheme, designed to allow
evaluation under encryption of a Boolean gate G. The output wire labels
of G are the two secrets from which P1 produces four secret shares, one
corresponding to each of the wire labels of the two input wires. GESS
guarantees that a valid combination of shares (one share per wire) can be used
to reconstruct the corresponding label of the output wire. This is similar to
Yao’s GC, but GESS does not require the use of garbled tables, and hence can
be viewed as a generalization of Yao’s GC. Similarly to Yao’s GC approach,
the secret sharing can be applied gate-by-gate without the need to decode or
reconstruct the plaintext values.

3.6. Information-Theoretic Garbled Circuits 51

Consider a two-input Boolean gate G. Given the possible output values
s0, s1 and the semantics of the gate G, P1 generates input labels (sh10, sh11),
(sh20, sh21), such that each possible pair of encodings (sh1,i, sh2, j) where
i, j ∈ {0, 1}, allows reconstructing G(i, j) but carries no other information.
Now, if P2 obtains shares corresponding to gate inputs, it would be able to
reconstruct the label on the output wire, and nothing else.

This mostly corresponds to our intuition of secret sharing schemes. Indeed,
the possible gate outputs play the role of secrets, which are shared and then
reconstructed from the input wires encodings (shares).

3.6.1 GESS for Two-Input Binary Gates

We present GESS for the 1-to-1 gate function G : {0, 1}2 7→ {00, 01, 10, 11},
where G(0, 0) = 00,G(0, 1) = 01,G(1, 0) = 10,G(1, 1) = 11. Clearly, this is a
generalization of the Boolean gate functionality G : {0, 1}2 7→ {0, 1}.

Let the secrets domain beDS = {0, 1}n, and four (not necessarily distinct)
secrets s00, ...s11 ∈ DS are given. The secret si j corresponds to the value
G(i, j) of the output wire.

The intuition for the design of the GESS scheme is as follows (see
illustration in Figure 3.4). We first randomly choose two strings R0, R1 ∈R DS
to be the shares sh10 and sh11 (corresponding to 0 and 1 of the first input wire).
Now consider sh20, the share corresponding to 0 of the second input wire. We
want this share to produce either s00 (when combined with sh10) or s10 (when
combined with sh11). Thus, the share sh20 will consist of two blocks. One,
block s00 ⊕ R0, is designed to be combined with R0 and reconstruct s00. The
other, s10 ⊕ R1, is designed to be combined with R1 and reconstruct s10. Share
sh21 is constructed similarly, setting blocks to be s01 ⊕ R0 and s11 ⊕ R1.

Both leftmost blocks are designed to be combined with the same share
R0, and both rightmost blocks are designed to be combined with the same
share R1. Therefore, we append a 0 to R0 to tell Rec to use the left block of the
second share for reconstruction, and append a 1 to R1 to tell Rec to use the
right block of the second share for reconstruction. Finally, to hide information
leaked by the order of blocks in shares, we randomly choose a bit b and if
b = 1 we reverse the order of blocks in both shares of wire 2 and invert the
appended pointer bits of the shares of wire 1. Secret reconstruction proceeds
by xor-ing the wire-1 share (excluding the pointer bit) with the first or second

52 Fundamental MPC Protocols

sh10, sh11 sh20, sh21

G

s0, s1

Figure 3.4: GESS for Boolean gate

half of the wire-2 share as indexed by the pointer bit.

3.6.2 Reducing Share Growth

Note the inefficiency of the above construction, causing the shares correspond-
ing to the second input wire be double the size of the gate’s secrets. While,
in some circuits we can avoid the exponential (in depth) secret growth by
balancing the direction of greater growth toward more shallow parts of the
circuit, a more efficient solution is desirable. We discuss only AND and OR
gates, since NOT gates are implemented simply by flipping the wire label
semantics by the Generator.GESS also enables XOR gates without any increase
the share sizes. We defer discussion of this to Section 4.1.2, because the XOR
sharing in GESS led to an important related improvement for Yao’s GC.

For OR and AND gates in the above construction, either the left or the right
blocks of the two shares are equal (this is because s00 = s01 for the AND gate,
and s10 = s11 for the OR gate). We use this property to reduce the size of the
shares when the secrets are of the above form. The key idea is to view the

3.6. Information-Theoretic Garbled Circuits 53

shares of the second wire as being the same, except for one block.
Suppose each of the four secrets consists of n blocks and the secrets differ

only in the j th block, as follows:
s00 = (t1 . . . tj−1 t00

j tj+1 . . . tn),
...

s11 = (t1 . . . tj−1 t11
j tj+1 . . . tn),

where ∀i = 1..n: ti, t00
j , t

01
j , t

10
j , t

11
j ∈ {0, 1}k for some k. It is convenient

to consider the columns of blocks, spanning across the shares. Every column
(with the exception of the j-th) consists of four equal blocks, where the value
j is private.

For simplicity, we show the main ideas by considering a special case
where the four secrets consist of n = 3 blocks each, and j = 2 is the index of
the column of distinct blocks. This intuition is illustrated on Figure 3.5. The
scheme naturally generalizes from this intuition; Kolesnikov (2005) provides a
formal presentation.

The idea is to share the secrets “column-wise”, treating each of the three
columns of blocks of secrets as a tuple of subsecrets and sharing this tuple
separately, producing the corresponding subshares. Consider sharing column 1.
All four subsecrets are equal (to t1), and we share them trivially by setting both
subshares of the first wire to a random string R1 ∈R DS , and both subshares of
the second wire to be R1 ⊕ t1. Column 3 is shared similarly. We share column
2 as in previous construction (highlighted on the diagram), omitting the last
step of appending the pointers and applying the permutation. This preliminary
assignment of shares (still leaking information due to order of blocks) is shown
on Figure 3.5.

Note that the reconstruction of secrets is done by xor-ing the corresponding
blocks of the shares, and, importantly, the procedure is the same for both types
of sharing we use. For example, given shares sh10 and sh21, we reconstruct
the secret s01 = (R1 ⊕ (R1 ⊕ t1), R2 ⊕ (R2 ⊕ t01

2), R3 ⊕ (R3 ⊕ t3)).
The remaining permute-and-point step is to apply (the same) random

permutation π to reorder the four columns of both shares of wire 2 and to
append (log 4)-bit pointers to each block of the shares of wire 1, telling the
reconstructor which block of the second share to use. Note that the pointers
appended to both blocks of column 1 of wire 1 are the same. The same holds

54 Fundamental MPC Protocols

Figure 3.5: Improved GESS for Boolean gate

for column 3. Pointers appended to blocks of column 2 are different. For
example, if the identity permutation was applied, then we will append “1” to
both blocks R1, “2” to R2, “3” to R′2, and “4” to both blocks R3. This leads to
the punchline: because G is either an OR or an AND gate, both tuples of shares
maintain the property that all but one of the pairs of corresponding blocks are
equal between the shares of the tuple. This allows repeated application (i.e.,
continuing sharing) of GESS for OR and AND gates.

Finally, to put it all together, we sketch the GESS-based MPC protocol.
P1 represents the function F as a formula F. Then, starting with the output
wires of F and taking the plaintext output wire labels as secrets, P1 applies
GESS scheme repeatedly to all gates of the circuit, assigning the GESS shares
to gates’ input wires until he assigns the labels to formula inputs. Then, P1
transfers to P2 active labels on the input wires, and P2 repeatedly uses GESS
reconstruction procedure to obtain output labels of F.

3.7 Oblivious Transfer

Oblivious Transfer, defined in Section 2.4, is an essential building block for
secure computation protocols, and an inherently asymmetric primitive. Impagli-
azzo and Rudich (1989) showed that a reduction from OT to a symmetric-key
primitive (one-way functions, PRF) implies that P,NP. However, as first
observed by Beaver (1996), a batched execution of OT only needs a small
number of public key operations. Beaver’s construction was non-black-box in
the sense that a PRF needed to be represented as a circuit and evaluated as
MPC. As a consequence, Beaver’s result was mainly of theoretical interest.

3.7. Oblivious Transfer 55

Parameters:

1. Two parties: Sender S and Receiver R. S has input secrets x1, x2 ∈
{0, 1}n, and R has a selection bit b ∈ {0, 1}.

Protocol:

1. R generates a public-private key pair sk, pk, and samples a random key,
pk ′, from the public key space. If b = 0, R sends a pair (pk, pk ′) to S.
Otherwise (if b = 1), R sends a pair (pk ′, pk) to S.

2. S receives (pk0, pk1) and sends back to R two encryptions e0 =

Encpk0(x0), e1 = Encpk1(x1).

3. R receives e0, e1 and decrypts the ciphertext eb using sk. R is unable
to decrypt the second ciphertext as it does not have the corresponding
secret key.

Figure 3.6: Public key-based semi-honest OT.

Ishai et al. (2003) changed the state of affairs dramatically by proposing an
extremely efficient batched OT which only required κ of public key operations
for the entire batch and two or three hashes per OT.

3.7.1 Public Key-Based OT

We start with the basic public key-based OT in the semi-honest model. The
construction, presented in Figure 3.6, is very simple indeed.

The security of the construction assumes the existence of public-key
encryption with the ability to sample a random public key without obtaining
the corresponding secret key. The scheme is secure in the semi-honest model.
The Sender S only sees the two public keys sent by R, so cannot predict with
probability better than 1

2 which key was generated without the knowledge of
the secret key. Hence, the view of S can be simulated simply by sending two
randomly-chosen public keys.

The Receiver R sees two encryptions and has a secret key to decrypt only
one of them. The view of R is also easily simulated, given R’s input and

56 Fundamental MPC Protocols

output. SimS will generate the public-private key pair and a random public
key, and set the simulated received ciphertexts to be 1) the encryption of the
received secret under the generated keypair and 2) the encryption of zero under
the randomly chosen key. The simulation goes through since the difference
with the real execution is only in the second encryption, and distinguisher
will not be a tell apart the encryption of zero from another value due to the
encryption security guarantees. Note that this semi-honest protocol provides
no security against a malicious receiver—the Receiver R can simply generate
two public-private key pairs, (sk0, pk0) and (sk1, pk1) and send (pk0, pk1) to
S, and decrypt both received ciphertexts to learn both x1 and x2.

3.7.2 Public Key Operations in OT

The simple protocol in Figure 3.6 requires one public key operation for both the
sender and receiver for each selection bit. As used in a Boolean circuit-based
MPC protocol such as Yao’s GC, it is necessary to perform an OT for each
input bit of the party executing the circuit. For protocols like GMW, evaluating
each AND gate requires an OT. Hence, several works have focused on reducing
the number of public key operations to perform a large number of OTs.

Beaver’s non-black-box construction. Beaver (1996) proposed bootstrap-
ping Yao’s GC protocol to generate a polynomial number of OTs from a small
number of public key operations. As discussed in Section 3.1, the GC protocol
for computing a circuit C requires m OTs, where m is the number of input
bits provided by P2. Following the OT notation, we call P1 (the generator in
GC) the sender S, and P2 (the evaluator in GC) the receiver R. Let m be a
desired number of OTs that will now be performed as a batch. S’s input will be
m pairs of secrets (x0

1, x1
1), ..., (x

0
m, x1

m), and R’s input will be m-bit selection
string b = (b1, ..., bm).

We now construct a circuit C that implements a function F which takes
only a small number of input bits from R, but outputs the result of polynomial
number of OTs to R. The input of R to F will be a randomly chosen κ-bit
string r . Let G be a pseudo-random generator expanding κ bits into m bits. R
will send to S its input string masked with the pseudo-random string, b ⊕G(r).
Then, S’s input to F will be m pairs of secrets (x0

1, x1
1), . . . , (x

0
m, x1

m) as well as
the m-bit string b⊕G(r). Given r , the function F computes the m-bit expansion

3.7. Oblivious Transfer 57

G(r) and unmasks the input b ⊕ G(r), obtaining the selection string b. Then
F simply outputs to R the corresponding secrets xbi . Only κ input bits are
provided by R, the circuit evaluator, so only a constant number of κ OTs are
needed to perform m OTs.

Reducing the number of public key operations. The construction ofBeaver
(1996) shows a simple way to reduce the number of asymmetric operations
required to perform m OTs to a fixed security parameter, but is not efficient in
practice because of the need to execute a large GC. Recall, our goal is to use a
small number k of base-OTs, plus only symmetric-key operations, to achieve
m � k effective OTs. Here, k is chosen depending on the computational
security parameter κ; in the following we show how to choose k. Below we
describe the OT extension by Ishai et al. (2003) that achieves m 1-out-of-2 OT
of random strings, in the presence of semi-honest adversaries.

We follow the notation ofKolesnikov andKumaresan (2013), as it explicates
the coding-theoretic framework for OT extension. Suppose the receiver R has
choice bits r ∈ {0, 1}m. R chooses two m × k matrices (m rows, k columns), T
and U. Let t j, u j ∈ {0, 1}k denote the j-th row of T and U, respectively. The
matrices are chosen at random, so that:

t j ⊕ u j = rj · 1k
def
=

{
1k if rj = 1
0k if rj = 0

The sender S chooses a random string s ∈ {0, 1}k . The parties engage in
k instances of 1-out-of-2 string-OT, with their roles reversed, to transfer to
sender S the columns of either T or U, depending on the sender’s bit si in
the string s it chose. In the i-th OT, R provides inputs t i and ui, where these
refer to the i-th column of T and U, respectively. S uses si as its choice bit
and receives output qi ∈ {t i, ui}. Note that these are OTs of strings of length
m � k — the length of OT messages is easily extended, e.g., by encrypting
and sending the two m-bit long strings, and using OT on short strings to send
the right decryption key.

Now let Q denote the matrix obtained by the sender, whose columns are
qi. Let q j denote the jth row. The key observation is that

q j = t j ⊕ [rj · s] =
{
t j if rj = 0
t j ⊕ s if rj = 1

(3.2)

58 Fundamental MPC Protocols

Let H be a Random Oracle (RO)5. Then S can compute two random
strings H(q j) and H(q j ⊕ s), of which R can compute only one, via H(t j),
of R’s choice. Indeed, following Equation 3.2, q j equals either t j or t j ⊕ s,
depending on R’s choice bit rj . It is immediate then that t j equals either q j or
q j ⊕ s, depending on R’s choice bit rj . Note that R has no information about s,
so intuitively it can learn only one of the two random strings H(q j),H(q j ⊕ s).
Hence, each of the m rows of the matrix can be used to produce a single
1-out-of-2 OT of random strings.

To extend this to the more usual 1-out-of-2 OT of two given secrets s0, s1,
we add the following step to the above. S now additionally encrypts the two OT
secrets with the two keys H(q j) and H(q j ⊕ s) and sending the two encryptions
(e.g. H(q j) ⊕ s0 and H(q j ⊕ s) ⊕ s1) to R. As R can obtain exactly one of
H(q j) and H(q j ⊕ s), he can obtain only the corresponding secret si.

Coding interpretation and cheaper 1-out-of-2` OT. In IKNP, the receiver
prepares secret shares of T and U such that each row of T ⊕ U is either all
zeros or all ones. Kolesnikov and Kumaresan (2013) interpret this aspect of
IKNP as a repetition code and suggest using other codes instead.

Consider how we might use the IKNP OT extension protocol to realize
1-out-of-2` OT. Instead of a choice bit rj for the receiver, rj will now be an `-bit
string. Let C be a linear error correcting code of dimension ` and codeword
length k. The receiver will prepare matrices T and U so that t j ⊕ u j = C(rj).

Now, generalizing Equation 3.2 the sender S receives

q j = t j ⊕ [C(rj) · s] (3.3)

where “·” now denotes bitwise-AND of two strings of length k. (Note that
when C is a repetition code, this is exactly Equation 3.2.)

For each value r ′ ∈ {0, 1}` , the sender associates the secret value H(q j ⊕
[C(r ′) · s]), which it can compute for all r ′ ∈ {0, 1}` . At the same time, the
receiver can compute one of these values, H(t j). Rearranging Equation 3.3,
we have:

H(t j) = H(q j ⊕ [C(rj) · s])

5As pointed out by Ishai et al. (2003), it is sufficient to assume that H is a correlation-robust
hash function, a weaker assumption than RO. A special assumption is required because the
same s is used for every resulting OT instance.

3.8. Custom Protocols 59

Hence, the value that the receiver can learn is the secret value that the sender
associates with the receiver’s choice string r ′ = rj .

At this point, OT of random strings is completed. For OT of chosen strings,
the sender will use each H(qi ⊕ [C(r) · s]) as a key to encrypt the r-th OT
message. The receiver will be able to decrypt only one of these encryptions,
namely one corresponding to its choice string rj .

To argue that the receiver learns only one string, suppose the receiver has
choice bits rj but tries to learn also the secret H(q j ⊕ [C(r̃) · s]) corresponding
to a different choice r̃ . We observe:

q j ⊕ [C(r̃) · s] = t j ⊕ [C(rj) · s] ⊕ [C(r̃) · s]
= t j ⊕ [(C(rj) ⊕ C(r̃)) · s]

Importantly, everything in this expression is known to the receiver except
for s. Now suppose the minimum distance of C is κ (the security parameter).
Then C(rj) ⊕ C(r̃) has Hamming weight at least κ. Intuitively, the adversary
would have to guess at least κ bits of the secret s in order to violate security.
The protocol is secure in the RO model, and can also be proven under the
weaker assumption of correlation robustness, following Ishai et al. (2003) and
Kolesnikov and Kumaresan (2013).

Finally, we remark that the width k of the OT extension matrix is equal to
the length of codewords in C. The parameter k determines the number of base
OTs and the overall cost of the protocol.

The IKNP protocol sets the number of OT matrix columns to be k = κ. To
achieve the same concrete security as IKNPOT, the KK13 protocol (Kolesnikov
and Kumaresan, 2013) requires setting k = 2κ, to account for the larger space
required by the more efficient underlying code C.

3.8 Custom Protocols

All of the secure computation protocols discussed so far in this chapter are
generic circuit-based protocols. Circuit-based protocols suffer from linear
bandwidth cost in the size of the circuit, which can be prohibitive for large
computations. There are significant overheads with circuit-based computation
on large data structures, compared to, say, a RAM (Random Access Machine)
representation. In Chapter 5 we discuss approaches for incorporating sublinear
data structures into generic circuit-based protocols.

60 Fundamental MPC Protocols

Another approach is to design a customized protocol for a particular prob-
lem. This has some significant disadvantages over using a generic protocol. For
one, it requires designing and proving the security of a custom protocol. It also
may not integrate with generic protocols, so even if there is an efficient custom
protocol for computing a particular function, privacy-preserving applications
often require additional pre-processing or post-processing around that function
to be useful, so it may not be possible to use a custom protocol without also
developing methods for connecting it with a generic protocol. Finally, although
hardening techniques are known for generic protocols (Chapter 6), it may not
be possible to (efficiently) harden a customized protocol to work in a malicious
security setting.

Nevertheless, several specialized problems do benefit from tailored so-
lutions and the performance gains possible with custom protocols may be
substantial. In this work we briefly review one such practically important
problem: private set intersection.

3.8.1 Private Set Intersection (PSI)

The goal of private set intersection (PSI) is to enable a group of parties to
jointly compute the intersection of their input sets, without revealing any other
information about those sets (other than upper bounds on their sizes). Although
protocols for PSI have been built upon generic MPC (Huang et al., 2012a),
more efficient custom protocols can be achieved by taking advantage of the
structure of the problem.

We will present current state-of-the art two-party PSI (Kolesnikov et al.,
2016). It is built on the protocol of Pinkas et al. (2015), which heavily uses
Oblivious PRF (OPRF) as a subroutine. OPRF is an MPC protocol which
allows two players to evaluate a PRF F, where one of the players holds the PRF
key k, and the other player holds the PRF input x, and the second player gets
Fk(x). We first describe how to obtain PSI from OPRF, and then we briefly
discuss the OPRF construction. The improvement of Kolesnikov et al. (2016)
is due to developing a faster OPRF.

PSI from OPRF. We now describe the Pinkas-Schneider-Segev-Zohner
(PSSZ) construction (Pinkas et al., 2015) building PSI from an OPRF. For
concreteness, we describe the parameters used in PSSZ when the parties have

3.8. Custom Protocols 61

roughly the same number n of items.
The protocol relies on Cuckoo hashing (Pagh and Rodler, 2004) with 3

hash functions, which we briefly review now. To assign n items into b bins
using Cuckoo hashing, first choose random functions h1, h2, h3 : {0, 1}∗ → [b]
and initialize empty bins B[1, . . . , b]. To hash an item x, first check to see
whether any of the bins B[h1(x)], B[h2(x)], B[h3(x)] are empty. If so, then
place x in one of the empty bins and terminate. Otherwise, choose a random
i ∈ {1, 2, 3}, evict the item currently in B[hi(x)] and replace it with x, and
then recursively try to insert the evicted item. If this process does not terminate
after a certain number of iterations, then the final evicted element is placed in
a special bin called the stash.

PSSZ uses Cuckoo hashing to implement PSI. First, the parties choose 3
random hash functions h1, h2, h3 suitable for 3-way Cuckoo hashing. Suppose
P1 has input set X and P2 has input set Y , where |X | = |Y | = n. P2 maps its
items into 1.2n bins using Cuckoo hashing and a stash of size s. At this point,
P2 has at most one item per bin and at most s items in its stash. P2 pads its
input with dummy items so that each bin contains exactly one item and the
stash contains exactly s items.

The parties then run 1.2n + s instances of an OPRF, where P2 plays the
role of receiver and uses each of its 1.2n + s items as input to the OPRF. Let
F(ki, ·) denote the PRF evaluated in the i-th OPRF instance. If P2 has mapped
item y to bin i via Cuckoo hashing, then P2 learns F(ki, y); if P2 has mapped
y to position j in the stash, then P2 learns F(k1.2n+j, y).

On the other hand, P1 can compute F(ki, ·) for any i. So, P1 computes sets
of candidate PRF outputs:

H = {F(khi (x), x) | x ∈ X and i ∈ {1, 2, 3}}
S = {F(k1.2n+j, x) | x ∈ X and j ∈ {1, . . . , s}}

P1 randomly permutes elements of H and elements of S and sends them to P2,
who can identify the intersection of X and Y as follows. If P2 has an item y

mapped to the stash, it checks whether the associated OPRF output is present in
S. If P2 has an item y mapped to a hashing bin, it checks whether its associated
OPRF output is in H.

Intuitively, the protocol is secure against a semi-honest P2 by the PRF
property. For an item x ∈ X \ Y , the corresponding PRF outputs F(ki, y) are

62 Fundamental MPC Protocols

pseudorandom. Similarly, if the PRF outputs are pseudorandom even under
related keys, then it is safe for the OPRF protocol to instantiate the PRF
instances with related keys.

The protocol is correct as long as the PRF does not introduce any further
collisions (i.e., F(ki, x) = F(ki′, x ′) for x , x ′). We must carefully set the
parameters required to prevent such collisions.

More efficient OPRF from 1-out-of-∞ OT. Kolesnikov et al. (2016) devel-
oped an efficient OPRF construction for the PSI protocol, by pushing on the
coding idea from Section 3.7.2. The main technical observation is pointing out
that the code C need not have many of the properties of error-correcting codes.
The resulting pseudorandom codes enable an 1-out-of-∞ OT, which can be
used to produce an efficient PSI.

In particular,

1. it makes no use of decoding, thus the code does not need to be efficiently
decodable, and

2. it requires only that for all possibilities r, r ′, the value C(r) ⊕ C(r ′) has
Hamming weight at least equal to the computational security parameter
κ. In fact, it is sufficient even if the Hamming distance guarantee is only
probabilistic — i.e., it holds with overwhelming probability over choice
of C (we discuss subtleties below).

For ease of exposition, imagine letting C be a random oracle with suitably
long output. Intuitively, when C is sufficiently long, it should be hard to
find a near-collision. That is, it should be hard to find values r and r ′ such
that C(r) ⊕ C(r ′) has low (less than a computational security parameter κ)
Hamming weight. A random function with output length k = 4κ suffices to
make near-collisions negligible (Kolesnikov et al., 2016).

We refer to such a function C (or family of functions, in our standard-
model instantiation) as a pseudorandom code (PRC), since its coding-theoretic
properties — namely, minimum distance — hold in a cryptographic sense.

By relaxing the requirement on C from an error-correcting code to a
pseudorandom code, we remove the a-priori bound on the size of the receiver’s
choice string! In essence, the receiver can use any string as its choice string;
the sender can associate a secret value H(q j ⊕ [C(r ′) · s]) for any string r ′. As

3.9. Further Reading 63

discussed above, the receiver is only able to compute H(t j) = H(q j ⊕[C(r) · s])
— the secret corresponding to its choice string r . The property of the PRC is
that, with overwhelming probability, all other values of q j ⊕ [C(r̃) · s] (that a
polytime player may ever ask) differ from t j in a way that would require the
receiver to guess at least κ bits of s.

Indeed, we can view the functionality achieved by the above 1-out-of-∞
OT as a kind of OPRF. Intuitively, r 7→ H(q ⊕ [C(r) · s]) is a function that
the sender can evaluate on any input, whose outputs are pseudorandom, and
which the receiver can evaluate only on its chosen input r .

The main subtleties in viewing 1-out-of-∞ OT as OPRF are:

1. the fact that the receiver learns slightly more than the output of this
“PRF” — in particular, the receiver learns t = q ⊕ [C(r) · s] rather than
H(t); and,

2. the fact that the protocol realizes many instances of this “PRF” but with
related keys — s and C are shared among all instances.

Kolesnikov et al. (2016) show that this construction can be securely used in
place of the OPRF in the PSSZ protocol, and can scale to support private
intersections of sets (of any size element) with n = 220 over a wide area
network in under 7 seconds.

Set intersection of multiple sets can be computed iteratively by computing
pairwise intersections. However, extending the above 2PC PSI protocol to the
multi-party setting is not immediate. Several obstacles need to be overcome,
such as the fact that in 2PC computation one player learns the set intersection of
the two input sets. In the multi-party setting this information must be protected.
Efficient extension of the above PSI protocol to the multi-party setting was
proposed by Kolesnikov et al. (2017a).

3.9 Further Reading

In this book, we aim to provide an easy to understand and exciting introduction
to MPC, so omit a lot of formalization and proofs. Yao’s GC, despite its
simplicity, has several technical proof subtleties, which are first noticed and
written out in the first formal account of Yao’s GC (Lindell and Pinkas, 2009).
The GMW protocol was introduced by Goldreich et al. (1987), but Goldreich

64 Fundamental MPC Protocols

(2004) provides a cleaner and more detailed presentation. The BGW and
CCD protocols were developed concurrently by Ben-Or et al. (1988) and
Chaum et al. (1988). Beaver et al. (1990) considered constant-round multiparty
protocols. A more detailed protocol presentation and discussion can be found
in Phillip Rogaway’s Ph.D. thesis (Rogaway, 1991).

Recently, a visual cryptography scheme for secure computation without
computers was designed based on the GESS scheme (D’Arco and De Prisco,
2014; D’Arco and De Prisco, 2016). The OT extension of Ishai et al. (2003)
is indeed one of the most important advances in MPC, and there are several
extensions. Kolesnikov and Kumaresan (2013) and Kolesnikov et al. (2016)
propose random 1-out-of-n OT and 1-out-of-∞ OT at a cost similar to that of
1-out-of-2 OT. The above schemes are in the semi-honest model; maliciously-
secure OT extensions were proposed Asharov et al. (2015b) and Keller et al.
(2015) (the latter is usually seen as simpler and more efficient of the two).

Custom PSI protocols have been explored in many different settings
with different computation vs. communication costs and a variety of trust
assumptions. Hazay and Lindell (2008) presented a simple and efficient private
set intersection protocol that assumes one party would perform computations
using a trusted smartcard. Kamara et al. (2014) present a server-aided private
set intersection protocol, which, in the case of the semi-honest server, computes
the private set intersection of billion-element sets in about 580 seconds while
sending about 12.4 GB of data. This is an example of asymmetric trust, which
we discuss further in Section 7.2.

There has been much research on custom protocols beyond PSI, but it is
surprisingly rare to find custom protocols that substantially outperform fast
generic MPC implementations of the same problem.

