
4
Implementation Techniques

Although secure computation protocols (as described in Chapter 3) were known
since the 1980s, the first full implementation of a generic secure computation
system was Fairplay (Malkhi et al., 2004). Fairplay compiles a high-level
description of a function into a circuit, described using a custom-designed
Secure Hardware Description Language (SHDL). This circuit could then be
executed as a protocol by a generator program and an evaluator program
running over a network.

As a rough indication of the costs of MPC with Fairplay, the largest
benchmark reported for Fairplay was finding the median of two sorted input
arrays containing ten 16-bit numbers from each party. This required executing
4383 gates, and took over 7 seconds on a local area network (the time was
then dominated by the oblivious transfer, not the garbled circuit execution).
Modern MPC frameworks can execute millions of gates per second, and scale
to circuits computing complex functions on large inputs, with hundreds of
billions of gates.

Perhaps a factor of ten of the improvement can be attributed to general
improvements in computing and network bandwidth (the Fairplay results are
on a LAN with 618 Mbps, compared to 4 Gbps routinely available today), but
the rest of the 3–4 orders of magnitude improvements are due primarily to the

65

66 Implementation Techniques

advances in implementation techniques described in this chapter. These include
optimizations that reduce the bandwidth and computational costs of executing
a GC protocol (Section 4.1), improved circuit generation (Section 4.2), and
protocol-level optimizations (Section 4.3). We focus on improvements to Yao’s
GC protocol, as the most popular generic MPC protocol, although some of
the improvements discussed apply to other protocols as well. Section 4.4
briefly surveys tools and languages that have been developed for implementing
privacy-preserving applications using MPC.

4.1 Less Expensive Garbling

The main costs of executing a garbled circuits protocol are the bandwidth
required to transmit the garbled gates and the computation required to generate
and evaluate the garbled tables. In a typical setting (LAN or WAN and
moderate computing resources such as smartphone or a laptop), bandwidth is
the main cost of executing GC protocols. There have been many improvements
to the traditional garbling method introduced in Section 3.1.2; we survey
the most significant ones next. Table 4.1 summarizes the impact of garbing
improvements on the bandwidth and computation required to generate and
evaluate a garbled gate. We described point-and-permute in Section 3.1.1; the
other techniques are described in the next subsections.

size calls to H

Technique XOR AND XOR AND

classical 4 4 4 4
point-and-permute (1990) (§3.1.1) 4 4 4, 1 4, 1
row reduction (GRR3) (1999) (§4.1.1) 3 3 4, 1 4, 1
FreeXOR + GRR3 (2008) (§4.1.2) 0 3 0 4, 1
half gates (2015) (§4.1.3) 0 2 0 4, 2

Table 4.1: Garbling techniques (based on Zahur et al. (2015)). Size is number of “ciphertexts”
(multiples of κ bits) transmitted per gate. Calls to H is the number of evaluations of H needed
to evaluate each gate. When the number is different for the generator and evaluator, the numbers
shown are the generator calls, evaluator calls.

4.1. Less Expensive Garbling 67

4.1.1 Garbled Row Reduction

Naor et al. (1999) introduced garbled row reduction (GRR) as a way to reduce
the number of ciphertexts transmitted per gate. The key insight is that it is
not necessary for each ciphertext to be an (unpredictable) encryption of a
wire label. Indeed, one of the entries in each garbled table can be fixed to a
predetermined value (say 0κ), and hence need not be transmitted at all. For
example, consider the garbled table below, where a and b are the input wires,
and c is the output:

H(a1 ‖ b0) ⊕ c0

H(a0 ‖ b0) ⊕ c0

H(a1 ‖ b1) ⊕ c1

H(a0 ‖ b1) ⊕ c0

Since c0 and c1 are just arbitrary wire labels, we can select c0 = H(a1 ‖ b0).
Thus, one of the four ciphertexts in each gate (say, the first one when it is
sorted according point-and-permute order) will always be the all-zeroes string
and does not need to be sent. We call this method GRR3 since only three
ciphertexts need to be transmitted for each gate.

Pinkas et al. (2009) describe a way to further reduce each gate to two
ciphertexts, applying a polynomial interpolation at each gate. Because this is
not compatible with the FreeXOR technique described next, however, it was
rarely used in practice. The later half-gates technique (Section 4.1.3) achieves
two-ciphertext AND gates and is compatible with FreeXOR, so supersedes the
interpolation technique of Pinkas et al. (2009).

4.1.2 FreeXOR

One of the results of Kolesnikov (2005) was the observation that the GESS
sharing for XOR gates can be done without any growth of the share sizes
(Section 3.6). Kolesnikov (2005) found a lower bound for the minimum share
sizes, explaining the necessity of the exponential growth for independent
secrets. This bound, however, did not apply to XOR gates (or, more generally,
to “even” gates whose truth table had two zeros and two ones).

As introduced in Section 3.6, XOR sharing for GESS can simply be done
as follows. Let s0, s1 ∈ DS be the output wire secrets. Choose R ∈R DS and

68 Implementation Techniques

set the shares sh10 = R, sh11 = s0 ⊕ s1 ⊕ R, sh20 = s0 ⊕ R, sh21 = s1 ⊕ R. The
share reconstruction procedure on input sh1i, sh2j , outputs sh1i ⊕ sh2j . It is
easy to verify that this allows the evaluator to reconstruct the correct gate
output secret. Indeed, e.g., sh11 ⊕ sh21 = (s0 ⊕ s1 ⊕ R) ⊕ (s1 ⊕ R) = s0.

Denoting s0 ⊕ s1 = ∆, we observe that this offset ∆ is preserved for the
labels of each wire: sh10 ⊕ sh11 = sh20 ⊕ sh21 = s0 ⊕ s1 = ∆.

Because the shares on all of the gate’s wires have the same offset, the
above GESS XOR gate construction cannot be directly plugged into Yao’s
GC, since standard Yao’s GC requires wires to be independently random. This
breaks both correctness and security of GC. Indeed, correctness is broken
because GESS XOR will not produce the pre-generated output wire secrets.
Standard GC security proofs fail since GESS XOR creates correlations across
wire labels, which are encryption keys. Even more problematic with respect to
security is the fact that keys and encrypted messages are related to each other,
creating circular dependencies.

FreeXOR: Integrating GESS XOR into GC. FreeXOR is a GC technique
introduced by Kolesnikov and Schneider (2008b). Their work is motivated
by the fact that in GESS an XOR gate costs nothing (no garbled table needed,
and share secrets don’t grow), while traditional Yao’s GC pays full price of
generating and evaluating a garbled table for XOR gates. The GC FreeXOR
construction enables the use of GESS XOR construction by adjusting GC
secrets generation to repair the correctness broken by the naïve introduction of
GESS XOR into GC, and observing that a strengthening of the assumptions
on the encryption primitives used in the construction of GC garbled tables is
sufficient for security of the new scheme.

FreeXOR integrates GESS XOR into GC by requiring that all the circuit’s
wires labels are generated with the same offset ∆. That is, we require that for
each wire wi of GC Ĉ and its labels w0

i ,w
1
i , it holds that w

0
i ⊕ w1

i = ∆, for
a randomly chosen ∆ ∈R {0, 1}κ . Introducing this label correlation enables
GESS XOR to correctly reconstruct output labels.

To address the security guarantee, FreeXOR uses Random Oracle (RO)
for encryption of gates’ output labels, instead of the weaker (PRG-based)
encryption schemes allowed by Yao GC. This is necessary since inputs to
different instances of H are correlated by ∆, and furthermore different values

4.1. Less Expensive Garbling 69

masked by H’s output are also correlated by ∆. The standard security definition
of a PRG does not guarantee that the outputs of H are pseudorandom in this case,
but a random oracle does. Kolesnikov and Schneider mention that a variant of
correlation robustness, a notion weaker than RO, is sufficient (Kolesnikov and
Schneider, 2008b). In an important theoretical clarification of the FreeXOR
required assumptions, Choi et al. (2012b) show that the standard notion of
correlation robustness is indeed not sufficient, and pin down the specific
variants of correlation robustness needed to prove the security of FreeXOR.

The full garbling protocol for FreeXOR is given in Figure 4.1. The FreeXOR
GCprotocol proceeds identically to the standardYaoGCprotocols of Figure 3.2,
except that in Step 4,P2 processesXOR gates without needing any ciphertexts or
encryption: for an XOR-gate Gi with garbled input labels wa = (ka, pa),wb =

(kb, pb), the output label is directly computed as (ka ⊕ kb, pa ⊕ pb).
Kolesnikov et al. (2014) proposed a generalization of FreeXOR called

fleXOR. In fleXOR, an XOR gate can be garbled using 0, 1, or 2 ciphertexts,
depending on structural and combinatorial properties of the circuit. FleXOR
can be made compatible with GRR2 applied to AND gates, and thus supports
two-ciphertext AND gates. The half gates technique described in the next
section, however, avoids the complexity of fleXOR, and reduces the cost of
AND gates to two ciphertexts with full compatibility with FreeXOR.

4.1.3 Half Gates

Zahur et al. (2015) introduced an efficient garbling technique that requires only
two ciphertexts per AND gate and fully supports FreeXOR. The key idea is to
represent an AND gate as XOR of two half gates, which are AND gates where
one of the inputs is known to one of the parties. Since a half gate requires
a garbled table with two entries, it can be transmitted using the garbled row
reduction (GRR3) technique with a single ciphertext. Implementing an AND
gate using half gates requires constructing a generator half gate (where the
generator knows one of the inputs) and an evaluator half gate (where the
evaluator knows one of the inputs). We describe each half gate construction
next, and then show how they can be combined to implement an AND gate.

Generator Half Gate. First, consider the case of an AND gate where the
input wires are a and b and the output wire is c. The generator half-AND gate

70 Implementation Techniques

Parameters:
Boolean Circuit C implementing function F , security parameter κ.
Let H : {0, 1}∗ 7→ {0, 1}κ+1 be a hash function modeled by a RO.
Protocol:

1. Randomly choose global key offset ∆ ∈R {0, 1}κ .

2. For each input wire wi of C, randomly choose its 0 label,

w0
i = (k0

i , p0
i) ∈R {0, 1}κ+1.

Set the other label w1
i = (k1

i , p1
i) = (k0

i ⊕ ∆, p0
i ⊕ 1).

3. For each gate Gi of C in topological order

(a) If Gi is an XOR-gate wc = XOR(wa,wb) with input labels
w0
a = (k0

a, p0
a),w0

b
= (k0

b
, p0

b
), w1

a = (k1
a, p1

a),w1
b
= (k1

b
, p1

b
):

i. Set garbled output value w0
c = (k0

a ⊕ k0
b
, p0

a ⊕ p0
b
)

ii. Set garbled output value w1
c = (k0

a ⊕ k0
b
⊕ ∆, p0

a ⊕ p0
b
⊕ 1).

(b) If Gi is a 2-input gate wc = gi(wa,wb) with garbled labels
w0
a = (k0

a, p0
a),w0

b
= (k0

b
, p0

b
), w1

a = (k1
a, p1

a),w1
b
= (k1

b
, p1

b
):

i. Randomly choose output label w0
c = (k0

c, p0
c) ∈R {0, 1}κ+1

ii. Set output label w1
c = (k1

c, p1
c) = (k0

c ⊕ ∆, p0
c ⊕ 1).

iii. CreateGi’s garbled table. For each of 22 possible combinations
of Gi’s input values va, vb ∈ {0, 1}, set

eva,vb = H(kva
a | |k

vb
b
| |i) ⊕ w

gi (va,vb)
c .

Sort entries e in the table by the input pointers, placing entry
eva,vb in position 〈pvaa , pvb

b
〉.

4. Compute the output tables, as in Figure 3.1.

Figure 4.1: FreeXOR Garbling

4.1. Less Expensive Garbling 71

computes vc = va ∧ vb, where va is somehow known to the circuit generator.
Then, when va is false, the generator knows vc is false regardless of vb; when va
is true, vc = vb. We use a0, b0, and c0 to denote the wire labels encoding false
for wires a, b, and c respectively. Using the FreeXOR design, the wire label
for b is either b0 or b1 = b0 ⊕ ∆. The generator produces the two ciphertexts:

H(b0) ⊕ c0

H(b1) ⊕ c0 ⊕ va · ∆

These are permuted according to the pointer bits of b0, according to the
point-and-permute optimization.

To evaluate the half gate and obtain va∧vb, the evaluator takes a hash of its
wire label for b (either b0 or b1) and decrypts the appropriate ciphertext. If the
evaluator has b0, it can compute H(b0) and obtain c0 (the correct semantic false
output) by xor-ing it with the first ciphertext. If the evaluator has b1 = b0 ⊕ ∆,
it computes H(b1) to obtain c0 ⊕ va · ∆. If va = 0, this is c0; if va = 1, this
is c1 = c0 ⊕ ∆. Intuitively, the evaluator will never know both b0 and b1,
hence the inactive ciphertext appears completely random. This idea was also
used implicitly by Kolesnikov and Schneider, 2008b, Fig. 2, in the context of
programming components of a universal circuit.

Crucially for performance, the two ciphertexts can be reduced to a single ci-
phertext by selecting c0 according to the garbled row-reduction (Section 4.1.1).

Evaluator Half Gate. For the evaluator half gate, vc = va ∧ vb, the evaluator
knows the value of va when the gate is evaluated, and the generator knows
neither input. Thus, the evaluator can behave differently depending on the
known plaintext value of wire a. The generator provides the two ciphertexts:

H(a0) ⊕ c0

H(a1) ⊕ c0 ⊕ b0

The ciphertexts are not permuted here—since the evaluator already knows va,
it is fine (and necessary) to arrange them deterministically in this order. When
va is false, the evaluator knows it has a0 and can compute H(a0) to obtain
output wire c0. When va is true, the evaluator knows it has a1 so can compute
H(a1) to obtain c0 ⊕ b0. It can then xor this with the wire label it has for b, to
obtain either c0 (false, when b = b0) or c1 = c0 ⊕ ∆ (true, when b1 = b0 ⊕ ∆),

72 Implementation Techniques

without learning the semantic value of b or c. As with the generator half gate,
using garbled row-reduction (Section 4.1.1) reduces the two ciphertexts to a
single ciphertext. In this case, the generator simply sets c0 = H(a0) (making
the first ciphertext all zeroes) and sends the second ciphertext.

Combining Half Gates. It remains to show how the two half gates can be
used to evaluate a gate vc = va ∧ vb, in a garbled circuit, where neither party
can know the semantic value of either input. The trick is for the generator to
generate a uniformly random bit r , and to transform the original AND gate into
two half gates involving r:

vc = (va ∧ r) ⊕ (va ∧ (r ⊕ vb))

This has the same value as va ∧ vb since it distributes to va ∧ (r ⊕ r ⊕ vb).
The first AND gate (va ∧ r) can be garbled with a generator half-gate. The
second AND gate (va ∧ (r ⊕ vb)) can be garbled with an evaluator half-gate, but
only if r ⊕ vb is leaked to the evaluator. Since r is uniformly random and not
known to the evaluator, this leaks no sensitive information to the evaluator. The
generator does not know vb, but can convey r ⊕ vb to the evaluator without any
overhead, as follows. The generator will choose r to be the point-and-permute
pointer bit of the false wire label on wire b, which is already chosen uniformly
randomly. Thus, the evaluator learns r ⊕ vb directly from the pointer bit on the
wire it holds for b without learning anything about vb.

Since the XOR gates do not require generating and sending garbled tables
by using FreeXOR, we can compute an AND gate with only two ciphertexts,
two invocations of H, and two “free” XOR operations. Zahur et al. (2015)
proved the security of the half-gates scheme for any H that satisfies correlation
robustness for naturally derived keys. In all settings, including low-latency
local area networks, both the time and energy cost of bandwidth far exceed
the cost of computing the encryptions (see the next section for how H is
computed in this and other garbling schemes), and hence the half-gates method
is preferred over any other known garbling scheme. Zahur et al. (2015) proved
that no garbling scheme in a certain natural class of “linear” schemes1 could

1See Zahur et al. (2015) for a precise formulation of this class. Roughly speaking, the
half-gates scheme is optimal among schemes that are allowed to call a random oracle and
perform fixed linear operations on wire labels / garbled gate information / oracle outputs, where
the choice of these operations depends only on standard point-and-permute (Section 3.1.1) bits.

4.1. Less Expensive Garbling 73

use fewer than two ciphertexts per gate. Hence, under these assumptions the
half-gates scheme is bandwidth-optimal for circuits composed of two-input
binary gates (see Section 4.5 for progress on alternatives).

4.1.4 Garbling Operation

Network bandwidth is the main cost for garbled circuits protocols in most
practical scenarios. However, computation cost of GC is also substantial, and
is dominated by calls to the encryption function implementing the random
oracle H in garbling gates, introduced in Section 3.1.2. Several techniques
have been developed to reduce that cost, in particular by taking advantage of
built-in cryptographic operations in modern processors.

Since 2010, Intel cores have included special-purpose AES-NI instructions
for implementing AES encryption, and most processors from other vendors
include similar instructions. Further, once an AES key is set up (which involves
AES round keys generation), the AES encryption is particularly fast. This
combination of incentives motivated Bellare et al. (2013) to develop fixed-key
AES garbling schemes, where H is implemented using fixed-key AES as a
cryptographic permutation.

Their design is based on a dual-key cipher (Bellare et al., 2012), where
two keys are both needed to decrypt a ciphertext. Bellare et al. (2012) show
how a secure dual-key cipher can be built using a single fixed-key AES
operation under the assumption that fixed-key AES is effectively a random
permutation. Since the permutation is invertible, it is necessary to combine the
permutation with the key using the Davies-Meyer construction (Winternitz,
1984): ρ(K) = π(K) ⊕ K . Bellare et al. (2013) explored the space of secure
garbling functions constructed from a fixed-key permutation, and found the
fastest garbling method using π(K | |T)[1 : k] ⊕ K ⊕ X where K ← 2A ⊕ 4B,
A and B are the wire keys, T is a tweak, and X is the output wire.

Gueron et al. (2015) pointed out that the assumption that fixed-key AES
behaves like a random permutation is non-standard and may be questionable in
practice (Biryukov et al., 2009; Knudsen and Rijmen, 2007). They developed
a fast garbling scheme based only on the more standard assumption that
AES is a pseudorandom function. In particular, they showed that most of
the performance benefits of fixed-key AES can be obtained just by carefully
pipelining the AES key schedule in the processor.

74 Implementation Techniques

Note also that the FreeXOR optimization also requires stronger than
standard assumptions (Choi et al., 2012b), and the half-gates method depends
on FreeXOR. Gueron et al. (2015) showed a garbling construction alternative
to FreeXOR that requires only standard assumptions, but requires a single
ciphertext for each XOR gate. Moreover, their construction is compatible with
a scheme for reducing the number of ciphertexts needed for AND gates to two
(without relying on FreeXOR, as is necessary for half gates). The resulting
scheme has higher cost than the half-gates scheme because of the need to
transmit one ciphertext for each XOR, but shows that it is possible to develop
efficient (within about a factor of two of the cost of half gates) garbling schemes
based only on standard assumptions.

4.2 Optimizing Circuits

Since the main cost of executing a circuit-based MPC protocol scales linearly
with the size of the circuit, any reduction in circuit size will have a direct
impact on the cost of the protocol. Many projects have sought ways to reduce
the sizes of circuits for MPC. Here, we discuss a few examples.

4.2.1 Manual Design

Several projects have manually designed circuits to minimize the costs of
secure computation (Kolesnikov and Schneider, 2008b; Kolesnikov et al.,
2009; Pinkas et al., 2009; Sadeghi et al., 2010; Huang et al., 2011b; Huang
et al., 2012a), often focusing on reducing the number of non-free gates when
FreeXOR is used. Manual circuit design can take advantage of opportunities
that are not found by automated tools, but because of the effort required
to manually design circuits, is only suitable for widely-used circuits. We
discuss one illustrative example next; similar approaches have been used to
design common building blocks optimized for secure computation such as
multiplexers and adders, as well as more complex functions like AES (Pinkas
et al., 2009; Huang et al., 2011b; Damgård et al., 2012a).

Oblivious permutation. Shuffling an array of data in an oblivious permuta-
tion is an important building block for many privacy-preserving algorithms,
including private set intersection (Huang et al., 2012a) and square-root ORAM

4.2. Optimizing Circuits 75

f

a
1

a
2

b
1

b
2

Figure 4.2: X switching block

(Section 5.4). A basic component of an oblivious permutation, as well as many
other algorithms, is a conditional swapper (also called an X switching block
by Kolesnikov and Schneider (2008b) and Kolesnikov and Schneider (2008a)),
which takes in two inputs, a1 and a2, and produces two outputs, b1 and b2.
Depending on the value of the swap bit p, either the outputs match the inputs
(b1 = a1 and b2 = a2) or the outputs are the inputs in swapped order (b1 = a2
and b2 = b1). The swap bit p is known to the circuit generator, but must not be
revealed to the evaluator. Kolesnikov and Schneider (2008b) provided a design
for a swapper that takes advantage of FreeXOR and requires only a two-row
garbled table (which can be reduced to a single ciphertext using garbled row
reduction from Section 4.1.1). The swapper is implemented as:

b1 = a1 ⊕ (p ∧ (a1 ⊕ a2))
b2 = a2 ⊕ (p ∧ (a1 ⊕ a2))

(4.1)

The swapper is illustrated in Figure 4.2. There the block f is set to 0
if no swapping is desired, and to 1 to implement swapping. The f block
is implemented as a conjunction of the input with the programming bit p,
so Figure 4.2 corresponds to Equation 4.1.

Since wire outputs can be reused, p ∧ (a1 ⊕ a2) only needs to be evaluated
once. Referring back to the half-gates garbling and the notation of Section 4.1.3,
when p is known to the generator, this conjunction is a generator half gate.
As noted above, applying GRR3 allows this to be implemented with a single

76 Implementation Techniques

ciphertext.2 With the above conditional swapper, a random oblivious permuta-
tion can be produced by the circuit generator by selecting a random permutation
and configuring the swappers in a Waksman network (Waksman, 1968) as
necessary to produce it (Huang et al., 2012a). Several permutation block
designs, including truncated permutation blocks, are presented by Kolesnikov
and Schneider (2008a).

Low-depth circuits: optimizing for GMW. For most of this chapter, we
focus on Yao’s GC, where a single round of communication is sufficient and
the cost of execution scales with the size of the circuit. While most of the
circuit-based optimizations apply to other protocols also, it is important to
consider variations in cost factors when designing circuits for other protocols.
In particular, in the GMW protocol (Section 3.2) each AND gate evaluation
requires an OT, and hence a round of communication. AND gates on the same
level can be batched and executed in the same round. Thus, unlike Yao’s GC
where the cost of execution is independent of its depth, for GMW protocol
executions the cost depends heavily on the depth of the circuit.

Choi et al. (2012a) built an efficient implementation of GMW by using
OT precomputation (Beaver, 1995) to reduce the on-line computation to a
simple XOR, and OT extension protocols (Section 3.7.2) to reduce the overall
cost of OT. A communication round (two messages) is still required during
evaluation for each level of AND gates, however, so circuit execution time
depends on the depth of the circuit. Schneider and Zohner (2013) provided
further optimizations to the OT protocols for use in GMW, and designed low-
depth circuits for several specific problems. Since GMW supports FreeXOR,
the effective depth of a circuit is the maximum number of AND gates on any
path. Schneider and Zohner (2013) were able to produce results on low-latency
networks with GMW that were competitive with Yao’s GC implementations
by designing low-depth circuits for addition, squaring, comparison, and
computing Hamming weight, and by using single-instruction multiple data
(SIMD) instructions to pack operations on multiple bits, following on the
approach used by Sharemind (Bogdanov et al., 2008a).

2Indeed, the idea for half-gates garbling (Section 4.1.3) came from this X switching block
design from Kolesnikov and Schneider (2008b).

4.2. Optimizing Circuits 77

4.2.2 Automated Tools

Boolean circuits go back to the earliest days of computing (Shannon, 1937).
Because they have core applications in computing (e.g., in hardware com-
ponents), there are a number of tools that have been developed to produce
efficient Boolean circuits. The output of some of these tools can be adapted to
circuit-based secure computation.

CBMC-GC. Holzer et al. (2012) used a model checking tool as the basis for a
tool that compiles C programs into Boolean circuits for use in a garbled circuits
protocol. CBMC (Clarke et al., 2004) is a bounded model checker designed to
verify properties of programs written in ANSI C. It works by first translating
an input program (with assertions that define the properties to check) into a
Boolean formula, and then using a SAT solver to test the satisfiability of that
formula. CBMC operates at the level of bits in the machine, so the Boolean
formula it generates is consistent with the program semantics at the bit level.
When used as a model checker, CBMC attempts to find a satisfying assignment
of the Boolean formula corresponding to the input program. If a satisfying
assignment is found, it corresponds to a program trace that violates an assertion
in the program. CBMC unrolls loops and inlines recursive function calls up
to the given model-checking bound, removing cycles from the program. For
many programs, CBMC can statically determine the maximum number of
loop iterations; when it cannot, programmers can use annotations to state this
explicitly. When used in bounded model checking, an assertion is inserted that
will be violated if the unrolling was insufficient. Variables are replaced by bit
vectors of the appropriate size, and the program is converted to single-static
assignment form so that fresh variables are introduced instead of assigning to
a given variable more than once.

Normally, CBMC would convert the program to a Boolean formula, but
internally it is represented as a circuit. Hence, CBMC can be used as a
component in a garbled circuits compiler that translates an input program in
C into a Boolean circuit. To build CBMC-GC, Holzer et al. (2012) modified
CBMC to output a Boolean circuit which can be then executed in circuit-based
secure computation framework (such as the one from Huang et al. (2011b),
which was used by CBMC-GC). Since CBMC was designed to optimize
circuits for producing Boolean formulas for SAT solvers, modifications were

78 Implementation Techniques

done to produce better circuits for garbled circuit execution. In particular, XOR
gates are preferred in GC execution due to the FreeXOR technique (whereas
the corresponding costs in model checking favor AND gates). To minimize the
number of non-free gates, Holzer et al. (2012) replaced the built-in circuits
CBMC would use for operations like addition and comparison, with designs
that minimize costs with free XOR gates.

TinyGarble. Another approach to generating circuits for MPC is to leverage
the decades of effort that have been invested in hardware circuit synthesis tools.
Hardware description language (HDL) synthesis tools transform a high-level
description of an algorithm, which could be written in a programming language
or common HDL language such as Verilog, into a Boolean circuit. A synthesis
tool optimizes a circuit to minimize its size and cost, and then outputs a netlist,
which is a straightforward description of a circuit as a list of logic gates with
connected inputs and outputs.

Conventional hardware synthesis tools, however, do not generate circuits
suitable for MPC protocols because they generate circuits that may have cycles
and they are designed to optimize for different costs that are encountered the
MPC execution (in particular, they assume the cost of gates based on hardware
implementations). With TinyGarble, Songhori et al. (2015) overcame these
problems in adapting circuit synthesis tools for generating circuits for MPC,
and Yao’s GC in particular.

The approach of TinyGarble is to use sequential logic in a garbled circuit.
In a sequential circuit, instead of just connecting gates in a combinational
way where each gate’s outputs depend only on its inputs and no cycles are
permitted, a circuit also can maintain state. In hardware, state would be stored
in a physical memory element (such as a flip-flop), and updated with each clock
cycle. To execute (generate and send) a garbled circuit, TinyGarble instead
unrolls a sequential circuit, so the stored state is an additional input to the
circuit, and new garbled gates are generated for each iteration. This means
the representation is compact, even for large circuit executions, which allows
performance improvement due to the ability to store the circuit in processor
cache and avoid expensive RAM accesses. This method trades off a slight
increase in the number of garbled gates to execute for a reduction in the size of
the circuit representation.

4.3. Protocol Execution 79

In addition, TinyGarble uses a custom circuit synthesis library to enable the
circuit synthesis tool to produce cost-efficient circuits for MPC. This includes
a library of custom-designed circuits for common operations like a multiplexer,
based on previous designs (Section 4.2.1). Another input to a circuit synthesis
tool is a technology library, that describes the logic units available on the target
platform and their costs and constraints, and use this to map a structural circuit
to a gate-level netlist. To generate circuits that take advantage of FreeXOR, the
custom library developed for TinyGarble sets the area of an XOR gate to 0, and
the area of other gates to a cost that reflects the number of ciphertexts required.
When the circuit synthesis tool is configured to minimize circuit area, this
produces circuits with an optimized number of non-XOR gates.

Songhori et al. (2015) report a 67% reduction in the number of non-XOR
gates in 1024-bit multiplication compared to automatically-generated circuits
for same function. For a more diverse function set (implementing a MIPS
processor), the circuit generation has modest performance improvement as
compared to prior work (the synthesizedMIPS CPU circuit reduces the number
of non-XOR gates by less than 15% compared to a straightforward assembly
of MIPS CPU from constituent blocks).

4.3 Protocol Execution

The main limit on early garbled circuit execution frameworks, starting with
Fairplay (Malkhi et al., 2004), is that they needed to generate and store the
entire garbled circuit. Early on, researchers focused on the performance for
smaller circuits and developed tools that naïvely generate and store the entire
garbled circuit. This requires a huge amount of memory for all but trivial
circuits, and limited the size of inputs and complexity of functions that could
be computed securely. In this section, we discuss various improvements to the
way MPC protocols are executed that have overcome these scaling issues and
eliminated much of the overhead of circuit execution.

Pipelined Execution. Huang et al. (2011b) introduced garbled circuit
pipelining, which eliminated the need for either party to ever store the entire
garbled circuit. Instead of generating the full garbled circuit and then sending it,
the circuit generation and evaluation phases are interleaved. Before the circuit
execution begins, both parties instantiate the circuit structure, which is small

80 Implementation Techniques

relative to the size of the full garbled circuit since it can reuse components and
is made of normal gate representations instead of non-reusable garbled gates.

To execute the protocol, the generator produces garbled gates in an order
that is determined by the topology of the circuit, and transmits the garbled
tables to the evaluator as they are produced. As the client receives them, it
associates each received garbled table with the corresponding gate of the circuit.
Since the order of generating and evaluating the circuit is fixed according
to the circuit (and must not depend on the parties’ private inputs), keeping
the two parties synchronized requires essentially no overhead. As it evaluates
the circuit, the evaluator maintains a set of live wire labels and evaluates the
received gates as soon as all their inputs are ready. This approach allows the
storage for each gate to be reused after it is evaluated, resulting in much smaller
memory footprint and greatly increased performance.

Compressing Circuits. Pipelining eliminates the need to store the entire
garbled circuit, but still requires the full structural circuit to be instantiated.
Sequential circuits, mentioned earlier in Section 4.2.2, are one way to overcome
this by enabling the same circuit structure to be reused but require a particular
approach to circuit synthesis and some additional overhead to maintain the
sequential circuit state. Another approach, initiated by Kreuter et al. (2013),
uses lazy generation from a circuit representation that supports bounded
loops. Structural circuits are compactly encoded using a Portable Circuit
Format (PCF), which is generated by a circuit compiler and interpreted as
the protocol executes. The input to the the circuit compiler is intermediate-
level stack machine bytecode output by the LCC front-end compiler (Fraser
and Hanson, 1995), enabling the system to generate MPC protocols from
different high-level programs. The circuit compiler takes in an intermediate-
level description of a program to execute as an MPC, and outputs a compressed
circuit representation. This representation is then used as the input to interpreters
that execute the generator and evaluator for a Yao’s GC protocol, although the
same representation could be used for other interpreters to executed different
circuit-based protocols.

The key insight enabling PCF’s scalability is to evaluate loops without
unrolling them by reusing the same circuit structure while having each party
locally maintain the loop index. Thus, new garbled tables can be computed

4.3. Protocol Execution 81

as necessary for each loop execution, but the size of the circuit, and local
memory needed, does not grow with the number of iterations. PCF represents
Boolean circuits in a bytecode language where each input is a single bit, and
the operations are simple Boolean gates. Additional operations are provided
for duplicating wire values, and for making function calls (with a return
stack) and indirect (only forward) jumps. Instructions that do not involve
executing Boolean operators do not require any protocol operations, so can be
implemented locally by each party. To support secure computation, garbled
wire values are represented by unknown values, which cannot be used as the
conditions for conditional branches. The PCF compiler implemented several
optimizations to reduce the cost of the circuits, and was able to scale to circuits
with billions of gates (e.g., over 42 billion gates, of which 15 billion were
non-free, to compute 1024-bit RSA).

Mixed Protocols. Although generic MPC protocols such as Yao’s GC and
GMW can execute any function, there are often much more efficient ways to
implement specific functions. For example, additively homomorphic encryption
schemes (including Paillier (1999) and Damgård and Jurik (2001)) can perform
large additions much more efficiently than can be done with Boolean circuits.

With homomorphic encryption, instead of jointly computing a function
using a general-purpose protocol, P1 encrypts its input and sends it to P2.
P2 then uses the encryption homomorphism to compute (under encryption)
a function on the encrypted input, and sends the encrypted result back to
P1. Unless the output of the homomorphic computation is the final MPC
result, its plaintext value cannot be revealed. Kolesnikov et al. (2010) and
Kolesnikov et al. (2013) describe a general mechanism for converting between
homomorphically-encrypted and garbled GC values. The party that evaluates
the homomorphic encryption, P2, generates a random mask r , which is added
to the output of the homomorphic encryption, Enc(x), before being sent to
P1 for decryption. Thus the value received by P1 is Enc(x + r), which P1 can
decrypt to obtain x + r . To enter x into the GC evaluation, P1 provides x + r
and P2 provides r as their inputs into the GC. The garbled circuit performs the
subtraction to cancel out the mask, producing a garbled representation of x.
Several works have developed customized protocols for particular tasks that
combine homomorphic encryption with generic MPC (Brickell et al., 2007;

82 Implementation Techniques

Huang et al., 2011c; Nikolaenko et al., 2013a; Nikolaenko et al., 2013b).
The TASTY compiler (Henecka et al., 2010) provides a language for

describing protocols involving both homomorphic encryption and garbled
circuits. It compiles a high-level description into a protocol combining gar-
bled circuit and homomorphic encryption evaluation. The ABY (Arithmetic,
Boolean, Yao) framework of Demmler et al. (2015) support Yao’s garbled
circuits and two forms of secret sharing: arithmetic sharings based on Beaver
multiplication triples (Section 3.4) and Boolean sharings based on GMW
(Section 3.2). It provides efficient methods for converting between the three
secure encodings, and for describing a function that can be executed using
a combination of the three protocols. Kerschbaum et al. (2014) developed
automated methods for selecting which protocol performs best for different
operations in a secure computation.

Outsourcing MPC. Although it is possible to run MPC protocols directly
on low-power devices, such as smartphones (Huang et al., 2011a), the high
cost of bandwidth and the limited energy available for mobile devices makes
it desirable to outsource the execution of an MPC protocol in a way that
minimizes the resource needed for the end user device without compromising
security. Several schemes have been proposed for off-loading most of the work
of GC execution to an untrusted server including Salus (Kamara et al., 2012)
and (Jakobsen et al., 2016).

We focus here on the scheme from Carter et al. (2016) (originally published
earlier (Carter et al., 2013)). This scheme targets the scenario where a mobile
phone user wants to outsource the execution of an MPC protocol to a cloud
service. The other party in the MPC is a server that has high bandwidth
and computing resources, so the primary goal of the design is to make the
bulk of the MPC execution be between the server and cloud service, rather
than between the server and mobile phone client. The cloud service may
be malicious, but it is assumed not to collude with any other party. It is a
requirement that no information about either the inputs or outputs of the secure
function evaluation are leaked to the cloud service. This security notion of a
non-colluding cloud is formalized by Kamara et al. (2012). The Carter et al.
(2016) protocol supports malicious security, building on several techniques,
some of which we discuss in Section 6.1. To obtain the inputs with lower

4.4. Programming Tools 83

resources from the client, the protocol uses an outsourced oblivious transfer
protocol. To provide privacy of the outputs, a blinding circuit is added to the
original circuit that masks the output with a random pad known only to the
client and server. By moving the bulk of the garbled circuit execution cost to
the cloud service, the costs for the mobile device can be dramatically reduced.

4.4 Programming Tools

Many programming tools have been developed for building privacy-preserving
applications using MPC. These tools vary by the input languages they support,
how they combine the input program into a circuit and how the output is
represented, as well as the protocols they support. Table 4.2 provides a high-
level summary of selected tools for building MPC applications. We don’t
attempt to provide a full survey of MPC programming tools here, but describe
one example of a secure computation programming framework next.

Obliv-C. The Obliv-C language is a strict extension of C that supports all
C features, along with new data types and control structures to support data-
oblivious programs that will be implemented using MPC protocols. Obliv-C is
designed to provide high-level programming abstractions while exposing the
essential data-oblivious nature of such computations. This allows programmers
to implement libraries for data-oblivious computation that include low-level
optimizations without needing to specify circuits.

In Obliv-C, a datatype declared with the obliv type modifier is oblivious to
the program execution. It is represented in encrypted form during the protocol
execution, so nothing in the program execution can depend on its semantic
value. The only way any values derived from secret data can be converted back
to a semantic value is by calling an explicit reveal function. When this function
is invoked by both parties on the same variable, the value is decrypted by the
executing protocol, and its actual value is now available to the program.

Control flow of a program cannot depend on oblivious data since its
semantic value is not available to the execution. Instead, Obliv-C provides
oblivious control structures. For example, consider the following statement
where x and y are obliv variables:

obliv if (x > y) x = y;

84 Implementation Techniques

Since the truth value of the x > y condition will not be known even at runtime,
there is no way for the execution to know if the assignment occurs. Instead,
every assignment statement inside an oblivious conditional context must use
“multiplexer” circuits that select based on the semantic value of the comparison
condition within the MPC whether to perform the update or have no effect.
Within the encrypted protocol, the correct semantics are implemented to ensure
semantic values are updated only on the branch that would actually be executed
based on the oblivious condition. The program executing the protocol (or an
analyst reviewing its execution) cannot determine which path was actually
executed since all of the values are encrypted within the MPC.

Updating a cleartext value z within an oblivious conditional branch would
not leak any information, but would provide unexpected results since the update
would occur regardless of whether or not the oblivious conditional is true.
Obliv-C’s type system protects programmers from mistakes where non-obliv
values are updated in conditional contexts. Note that the type checking is not
necessary for security since the security of the obliv values is enforced at
runtime by the MPC protocol. It only exists to help the programmers avoid
mistakes by providing compile time errors for non-sensical code.

To implement low-level libraries and optimizations, however, it is useful
for programmers to escape that type system. Obliv-C provides an unconditional
block construct that can be used within an oblivious context but contains
code that executes unconditionally. Figure 4.3 shows an example of how
an unconditional block (denoted with ∼obliv(var)) can be used to implement
oblivious data structures in Obliv-C. This is an excerpt of an implementation
of a simple resizable array implemented using a struct that contains oblivious
variables representing the content and actual size of the array, and an opaque
variable representing its maximum possible size. While the current length of
the array is unknown (since we might append() while inside an obliv if), we
can still use an unconditional block to track a conservative upper bound of the
length. We use this variable to allocate memory space for an extra element
when it might be needed.

This simple example illustrates how Obliv-C can be used to implement
low-level optimizations for complex oblivious data structures, without needing
to implement them at the level of circuits. Obliv-C has been used to implement
libraries for data-oblivious data structures supporting random access memory

4.5. Further Reading 85

typedef struct {
obliv int ∗arr;
obliv int sz;
int maxsz;

} Resizeable;

void writeArray(Resizeable ∗r, obliv int index, obliv int val) obliv;

// obliv function, may be called from inside oblivious conditional context
void append(Resizable ∗r, obliv int val) obliv {
∼obliv(_c) {

r→arr = reallocateMem(r→arr, r→maxsz + 1);
r→maxsz++;

}
writeArray(r, r→sz, val);
r→sz++;

}

Figure 4.3: Example use of an unconditional block (extracted from Zahur and Evans (2015)).

including Square-Root ORAM (Section 5.4) and Floram (Section 5.5), and to
implement some of the largest genericMPC applications to date including stable
matching at the scale needed for the national medical residency match (Doerner
et al., 2016), an encrypted email spam detector (Gupta et al., 2017), and a
commercial MPC spreadsheet (Calctopia, Inc., 2017).

4.5 Further Reading

Many methods for improving garbling have been proposed beyond the ones
covered in Section 4.1. As mentioned in Section 4.1.3, the half-gates scheme
is bandwidth optimal under certain assumptions. Researchers have explored
several ways to reduce bandwidth by relaxing those assumptions including
garbling schemes that are not strictly “linear” in the sense considered in the
optimality proof (Kempka et al., 2016), using high fan-in gates (Ball et al.,
2016) and larger lookup tables (Dessouky et al., 2017; Kennedy et al., 2017).
MPC protocols are inherently parallelizable, but additional circuit design effort
may be helpful for maximizing the benefits of parallel execution (Buescher
and Katzenbeisser, 2015). GPUs provide further opportunities for speeding up

86 Implementation Techniques

Tool / Input Language Output/Execution Protocols
ABY / Custom low-level
Demmler et al., 2015

Virtual machine
executes protocol

Arithmetic, Boolean
sharings; GC (§4.3)

EMP / C++ Library
Wang et al., 2017a

Compiled to exe-
cutable

Authenticated Gar-
bling (§6.7), others

Frigate / Custom (C-like)
Mood et al., 2016

Interprets compact
Boolean circuit

Yao’s GC, malicious-
secure with DUPLO

Obliv-C / C + extensions
Zahur and Evans, 2015

Source-to-source
(C)

Yao’s GC, Dual
Execution (§7.6)

PICCO / C + extensions
Zhang et al., 2013

Source-to-source
(C)

3+-party secret-
sharing

Table 4.2: Selected MPC Programming tools. In this table, we focus on tools that are
recently or actively developed, and that provide state-of-the-art performance. The
DUPLO extension is from (Kolesnikov et al., 2017b). All of the listed tools are avail-
able as open source code: ABY at https://github.com/encryptogroup/ABY; EMP at
https://github.com/emp-toolkit; Frigate at https://bitbucket.org/bmood/frigaterelease;
Obliv-C at https://oblivc.org; PICCO at https://github.com/PICCO-Team/picco.

MPC execution (Husted et al., 2013).
Many other MPC programming tools have been developed. Wysteria (Ras-

togi et al., 2014) provides a type system that supports programs that combine
local and secure computation. SCAPI (Bar-Ilan Center for Research in Applied
Cryptography and Cyber Security, 2014; Ejgenberg et al., 2012) provides
Java implementations of many secure computation protocols. We focused on
tools mostly building on garbled circuit protocols, but many tools implement
other protocols. For example, the SCALE-MAMBA system (Aly et al., 2018)
compiles programs written in a custom Python-like language (MAMBA) to
execute both the offline and online phases of secure computation protocols
built on BDOZ and SPDZ (Section 6.6.2). We focused on programming
tools in the dishonest majority setting, but numerous tools have been built
supporting other threat models. In particular, very efficient implementations
are possible with assuming three-party, honest-majority model, most notably
Sharemind (Bogdanov et al., 2008b) and Araki et al. (2017) (Section 7.1.2).

https://github.com/encryptogroup/ABY
https://github.com/emp-toolkit
https://bitbucket.org/bmood/frigaterelease
https://oblivc.org
https://github.com/PICCO-Team/picco

