
5
Oblivious Data Structures

Standard circuit-based execution is not well-suited to programs relying on
random access to memory. For example, executing a simple array access where
the index is a private variable (we use the < z > notation to indicate that the
variable z is private, with its semantic value protected by MPC),

a[<i>] = x

requires a circuit that scales linearly in the size of the array a. A natural circuit
consists of N multiplexers, as shown in Figure 5.1. This method, where every
element of a data structure is touched to perform an oblivious read or an update,
is known as linear scan. For practical computations on large data structures, it
is necessary to provide sublinear access operations. However, any access that
only touches a subset of the data potentially leaks information about protected
data in the computation.

In this chapter, we discuss several extensions to circuit-basedMPCdesigned
to enable efficient applications using large data structures. One strategy for
providing sublinear-performance data structures in oblivious computation is to
design data structures that take advantage of predictable access patterns. Indeed,
it is not necessary to touch the entire data structure if the parts that are accessed
do not depend on any private data (Section 5.1). A more general strategy,
however, requires providing support for arbitrary memory access with sublinear

87

88 Oblivious Data Structures

== 0

a[0] x

a'[0]

…

a[1] x

a'[1]

a[2] x

a'[2]

i

== 1

i

== 2

i

Figure 5.1: A single array access requiring N multiplexers.

a[0]

a'[0]

×2

a[1]

a'[1]

×2

a[N-1]

a'[N-1]

×2…

Figure 5.2: Oblivious array update with predictable access pattern.

cost. This cannot be achieved within a general-purpose MPC protocol, but can
be achieved by combining MPC with oblivious RAM (Sections 5.2–5.5).

5.1 Tailored Oblivious Data Structures

In some programs the access patterns are predictable and known in advance,
even though they may involve private data. As a simple example, consider this
loop that doubles all elements of an array of private data:

for (i = 0; i < N; i++) {
a[i] = 2 ∗ a[i]

}

Instead of requiring N linear scan array accesses for each iteration (withΘ(N2)
total cost), the loop could be unrolled to update each element directly, as shown
in Figure 5.2. Since the access pattern required by the algorithm is completely
predictable, there is no information leakage in just accessing each element
once to perform its update.

Most algorithms access data in a way that is not fully and as obviously
predictable as in the above example. Conversely, usually it is done in a way that

5.1. Tailored Oblivious Data Structures 89

is not fully data-dependent. That is, it might be a priori known (i.e., known
independently of the private inputs) that some access patterns are guaranteed
to never occur in the execution. If so, an MPC protocol that does not include
the accesses that are known to be impossible regardless of the private data may
still be secure. Next, we describe oblivious data structures designed to take
advantage of predictable array access patterns common in many algorithms.

Oblivious Stack and Queue. Instead of implementing a stack abstraction
using an array, an efficient oblivious stack takes advantage of the inherent
locality in stack operations—they always involve the top of the stack. Since
stack operations may occur in conditional contexts, though, the access pattern is
not fully predictable. Hence, an oblivious stack data structure needs to provide
conditional operations which take as an additional input a protected Boolean
variable that indicates whether the operation actually occurs. For example,
the <stack>.condPush(, <v>) operation pushes v on the stack when the
semantic value of b is true, but has no impact on the semantic state of the stack
when b is false.

A naïve implementation of condPush would be to use a series of multi-
plexers to select for each element of the resulting stack either the current
element, stack[i] when b is false, or the previous element, stack[i − 1] (or pushed
value v, for the top element) when b is true. As with a linear scan array, however,
this implementation would still require a circuit whose size scales with the
maximum current size of the stack for each stack operation.

A more efficient data structure uses a hierarchical design, dividing the
stack representation into a group of buffers where each has some slack space
so it is not necessary to touch the entire data structure for each operation. The
design in Zahur and Evans (2013), inspired by Pippenger and Fischer (1979),
divides the stack into buffers where the level-i buffer has 5 × 2i data slots.
The top of the stack is represented by level 0. For each level, the data slots
are managed in blocks/groups of 2i slots; thus, for level 1, each data is always
added in a block of two data items. For each block, a single bit is maintained
that tracks whether the block is currently empty. For each level, a 3-bit counter,
t, keeps track of the location of the next empty block available (0–5).

Figure 5.3 depicts an example of a conditional stack which starts off with
some data already inserted and two condPush operations are illustrated. The

90 Oblivious Data Structures

starting state in the figure depicts a state where none of the t values exceed
3, and hence there is guaranteed sufficient space for two conditional push
operations. A multiplexer is used to push the new value into the correct slot
based on the t0 value, similar to the naïve stack circuit design described above.
However, in this case, the cost is low since this is applied to a fixed 5-element
array. After two conditional push operations, however, with the starting t0 = 3,
the level 0 buffer could be full. Hence, it is necessary to perform a shift, which
either has no impact (if t0 ≤ 3), or pushes one block from level 0 into level 1
(as shown in Figure 5.3). After the shift, two more conditional push operations
can be performed. This hierarchical design can extend to support any size stack,
with shifts for level i generated for every 2i condPush operations. A similar
design can support conditional pop operations, where left shifts are required
for level i after every 2i condPop operations. The library implementing the
conditional stack keeps track of the number of stack operations to know the
minimum and maximum number of possible elements at each level, and inserts
the necessary shifts to prevent overflow and underflows.

For all circuit-based MPC protocols, the primary cost is the bandwidth
required to execute the circuit, which scales linearly in the number of gates.
The cost depends on the maximum possible number of elements at each point
in the execution. For a stack known to have at most N elements, k operations
access level i at most bk/2ic times since we need a right shift for level i after
every 2i conditional push operations (and similarly, need a left shift after 2i

conditional pop operations).
However, the operations at the deeper levels are more expensive since the

size of each block of elements at level i is 2i, requiring Θ(2i) logic gates to
move. So, we need Θ(2i × k/2i) = Θ(k)-sized circuits at level i. Thus, with
Θ(log N) levels, the total circuit size for k operations is Θ(k log N) and the
amortized cost for each conditional stack operation is Θ(log N).

Other Oblivious Data Structures. Zahur and Evans (2013) also present a
similar oblivious hierarchical queue data structure, essentially combining two
stacks, one of which only supports push operations and the other that only
supports pop operations. Since these stacks only need to support one of the
conditional operations, instead of using a 5-block buffer at each level they use
a 3-block buffer. Moving data between the two stacks requires an additional

5.1. Tailored Oblivious Data Structures 91

2 9 3
t0 = 3

4 7
t1 = 2

5 4
Level 0

t2 = 1

Level 1 Level 2

condPush(True, 7)

condPush(True, 8)

shift(0)

7 2 9 3
t0 = 4

4 7
t1 = 2

5 4
t2 = 1

8 7 2 9 3
t0 = 5

4 7
t1 = 2

5 4
t2 = 1

8 7 2
t0 = 3

4 7
t1 = 3

5 49 3
t2 = 1

Figure 5.3: Illustration of two conditional push operations for oblivious stack. The shift(0)
operation occurs after every two condPush operations.

multiplexer. Similarly to the oblivious stack, the amortized cost for operations
on the oblivious queue is Θ(log N).

Data structures designed to provide sublinear-cost oblivious operations
can be used for a wide range of memory access patterns, whenever there is
sufficient locality and predictability in the code to avoid the need to provide full
random access. Oblivious data structures may also take advantage of operations
that can be batched to combine multiple updates into single data structure scan.
For example, Zahur and Evans (2013) present an associative map structure
where a sequence of reads and writes with no internal dependencies can be
batched into one update. This involves constructing the new value of the data
structure by sorting the original values and the updates into a array, and only
keeping the most recent value of each key-value pair. This allows up to N
updates to be performed with a circuit of size Θ(N log2 N), with an amortized
cost per update of Θ(log2 N).

The main challenge is writing programs to take advantage of predictable
memory access patterns. A sophisticated compiler may be able to identify
predictable access patterns in typical code and perform the necessary transfor-
mations automatically, but this would require a deep analysis of the code and
no suitable compiler currently exists. Alternatively, programmers can manually
rewrite code to use libraries that implement the oblivious data structures
and manage all of the bookkeeping required to carry out the necessary shift

92 Oblivious Data Structures

operations. Another strategy for building efficient oblivious data structures is
to build upon a general-purpose Oblivious RAM, which is the focus of the rest
of this chapter.

5.2 RAM-Based MPC

Oblivious RAM (ORAM) was introduced by Goldreich and Ostrovsky (1996)
as a memory abstraction that allows arbitrary read and write operations without
leaking any information about which locations are accessed. The original
ORAM targeted the client-server setting, where the goal is to enable a client to
outsource data to an untrusted server and perform memory operations on that
outsourced data without revealing the data or access patterns to the server.

Ostrovsky and Shoup (1997) first proposed the general idea of using ORAM
to support secure multi-party computation by splitting the role of the ORAM
server between two parties. Gordon et al. (2012) were the first to propose a
specific method for adapting ORAM to secure computation (RAM-MPC, also
often called RAM-SC). In (Gordon et al., 2012), the ORAM state is jointly
maintained by both parties (client and server) within a secure computation
protocol. The key idea is to have each party store a share of the ORAM’s state,
and then use a general-purpose circuit-based secure computation protocol to
execute the ORAM access algorithms.

An ORAM system specifies an initialization protocol that sets up the
(possibly already populated) storage structure, and an access protocol that
implements oblivious read and write operations on the structure. To satisfy the
oblivious memory goals, an ORAM system must ensure that the observable
behaviors reveal nothing about the elements that are accessed. This means the
physical access patterns produced by the access protocol for any same-length
access sequences must be indistinguishable.

The initialization protocol takes as input an array of elements and initializes
an oblivious structure with those elements without revealing anything about
the initial values other than the number of elements. Assuming the access
protocol is secure, it is always possible to implement the initialization protocol
by performing the access protocol once for each input element. The costs of
initializing an ORAM this way, however, may be prohibitive, especially as
used in secure computation.

5.3. Tree-Based RAM-MPC 93

The RAM-MPC construction proposed by Gordon et al. (2012) imple-
mented an ORAM-based secure multi-party computation. To implement an
ORAM access, a circuit is executed within a 2PC that translates the oblivious
logical memory location into a set of physical locations that must be accessed
to perform the access. The physical locations are then revealed to the two
parties, but the ORAM design guarantees that these leak no information about
the logical location accessed. Each party then retrieves the data shares stored
in those locations, and passes them into the MPC. To complete the access, a
logical write occurs, as follows. The circuit executing within the MPC produces
new data elements to be written back to each of the physical locations. These
locations are output in plaintext, together with the data shares to be written
into parties’ local physical storage.

Gordon et al. (2012) proved that combining semi-honest 2PC with the
semi-honest ORAM protocol where ORAM state is split between the two
parties and operations are implemented within the 2PC results in a secure
RAM-based MPC in the semi-honest model.1

5.3 Tree-Based RAM-MPC

The construction of Gordon et al. (2012) builds on the tree-based ORAM
design of Shi et al. (2011). The underlying data structure in the tree-based
ORAM storing N elements is a binary tree of height log N , where each node
in the tree holds log N elements. Each logical memory location is mapped to a
random leaf node, and the logical index and value of the data element is stored
in encrypted form in one of the nodes along the path between the tree root and
that leaf. To access a data item, the client needs to map the item’s location to
its associated leaf node and retrieve from the server all nodes along the path
from the root to that node. Each of the nodes along the path is decrypted and
scanned to check if it is the requested data element.

A careful reader will notice the following technical difficulty. Performing
data look up requires mapping the logical location to the leaf node. However,
the size of this map is linear in N , and hence the map cannot be maintained
by the client with sublinear storage. The solution is to store the location map

1RAM-MPC can also be made to work in the malicious security model (Afshar et al.,
2015), but care must be taken to ensure that data stored outside the MPC is not corrupted.

94 Oblivious Data Structures

by the server using another instance of tree-based ORAM. Importantly, since
the size of the index map is smaller than the size of the data, the size of the
second ORAM tree can be smaller than N , as each item in the second tree can
store several mappings. To support larger ORAMs, a sequence of look-up trees
might be used, where only the smallest tree is stored by the client.

In RAM-MPC, the trees are secret-shared between the two parties. To
access an element, the parties execute a 2PC protocol that takes the shares of
the logical index and outputs (in shares to each party) the physical index for
the next level. A linear scan is used on the reconstructed elements along the
search path to identify the one corresponding to the requested logical index.
In the final tree, the shares of the requested data element are output to the
higher-level MPC protocol. Note that the data in each node could also be stored
in an ORAM to avoid the need for a linear scan, but since the bucket sizes are
small here and (at least with this ORAM design) there is substantial overhead
required to support an ORAM, a simple linear scan is preferred.

To complete the data access procedure, we need to ensure that the subse-
quent access results in an oblivious access pattern, even if the same element is
accessed again. To achieve this in tree-based ORAMs, the accessed logical
location is re-mapped to a random leaf node, and the updated data value is
inserted into the root node in the tree, ensuring its availability in the subsequent
access. To prevent the root node from overflowing, the protocol of Shi et al.
(2011) uses a balancing mechanism that pushes items down the tree after each
ORAM access. Randomly-selected elements are evicted and are moved down
the tree by updating both of the child nodes of the selected nodes (this is done
to mask which leaf-path contains the evicted element).

Intuitively, the access pattern is indistinguishable from a canonical one,
and hence an adversary cannot distinguish between two accesses. Indeed, every
time an element is accessed, it is moved to a random-looking location. Further,
every access retrieves a complete path from the root to a leaf, so as long as the
mapping between logical locations and leaves is random and not revealed to
the server, the server learns no information about which element is accessed.
The scheme does have the risk that a node may overflow as evicted elements
are moved down the tree, and not be able to store all of the elements required.
The probability of an overflow after k ORAM accesses with each node holding
O(log(kNδ)) elements is shown by Shi et al. (2011) to be less than δ, which

5.3. Tree-Based RAM-MPC 95

is why the number of elements in each node is set to O(log N) to make the
overflow probability negligible. The constant factors matter, however. Gordon
et al. (2012) simulated various configurations to find that a binary search on a
216 element ORAM (that is, only 16 operations) could be implemented with
less than 0.0001 probability of overflow with a bucket size of 32.

Variations on this design improved the performance of tree-based ORAM
for MPC have focused on using additional storage (called a stash) to store
overflow elements and reduce the sizes of the buckets needed to provide
negligible failure probability, as well as on improving the eviction algorithm.

Path ORAM. Path ORAM (Stefanov et al., 2013) added a stash to the design
as a fixed-size auxiliary storage for overflow elements, which would be scanned
on each request. The addition of a small stash enabled a more efficient eviction
strategy than the original binary-tree ORAM. Instead of selecting two random
nodes at each level for eviction and needing to update both child nodes of the
selected nodes to mask the selected element, Path ORAM performed evictions
on the access path from the root to the accessed node, moving elements along
this path from the root towards the leaves as much as possible. Since this path
is already accessed by the request, no additional masking is necessary to hide
which element is evicted. The Path ORAM design was adapted by Wang et al.
(2014a) to provide a more efficient RAM-MPC design, and they presented a
circuit design for a more efficient eviction circuit.

Circuit ORAM. Further advances in RAM-MPC designs were made both by
adapting improvements in traditional client-server ORAM designs to RAM-
MPC, as well as by observing differences between the costs and design space
options between the MPC and traditional ORAM setting and designing ORAM
schemes focused on the needs of MPC.

Wang et al. (2014a) argued that the main cost metric for ORAM designs
used in circuit-based secure computation should be circuit complexity, whereas
client-server designs were primarily evaluated based on (client-server) band-
width metrics. When used within an MPC protocol, the execution costs of an
ORAM are dominated by the bandwidth costs of executing the circuits needed
to carry out ORAM accesses and updates within the MPC protocol.

Wang et al. (2015b) proposed Circuit ORAM, an ORAM scheme designed

96 Oblivious Data Structures

specifically for optimal circuit complexity for use in RAM-MPC. Circuit
ORAM replaced the complex eviction method of Path ORAM with a more
efficient design where the eviction can be completed with a single scan of the
blocks on the eviction path, incorporating both the selection and movement of
data blocks within a single pass. Their key insight is to perform two metadata
scans first, so as to determine which blocks are to be moved, together with their
new locations. These scans can be run on the metadata labels, which are much
smaller than the full data blocks. After these scans have determined which
blocks to move, the actual data blocks can be moved using a single pass along
the path from the stash-root to the leaf, storing at most one block of data to
relocate as it proceeds.

Because the metadata scans are on much smaller data than the actual
blocks, the concrete total cost of the scan is minimized. Wang et al. (2015b)
proved that with block size of D = Ω(log2 N), Circuit ORAM can achieve
statistical failure probability of δ for block by setting the stash size to O(log 1

δ)
with circuit size of O(D(log N + log 1

δ)). The optimizations in Circuit ORAM
reduce the effective cost of ORAM (measured by the number of non-free gates
required in a circuit) by a factor of over 30 compared to the initial binary-tree
ORAM design for a representative 4GB data size with 32-bit blocks.

5.4 Square-Root RAM-MPC

Although the first proposed ORAM designs were hierarchical, early RAM-
MPC designs did not adopt these constructions because their implementation
seemed to require implementing a pseudo-random function (PRF) within the
MPC, and using the outputs of that function to perform an oblivious sort.
Both of these steps would be very expensive to do in a circuit-based secure
computation circuit, so RAM-MPC designs favored ORAMs based on the
binary-tree design which did not require sorting or a private PRF evaluation.

Zahur et al. (2016) observed that the classic square-root ORAM design of
Goldreich and Ostrovsky (1996) could in fact be adapted to work efficiently in
RAM-MPC by implementing an oblivious permutation where the PRF required
for randomizing the permutation would be jointly computed by the two parties
outside of the generic MPC. This led to a simple and efficient ORAM design,
which, unlike tree-based ORAMs, has zero statistical failure probability, since
there is no risk that a block can overflow. The design maintains a public

5.4. Square-Root RAM-MPC 97

set, Used, of used physical locations (revealing no information since logical
locations are assigned randomly to physical ones, and only accessed at most
once), and an oblivious stash at each level that stores accessed blocks. Since the
stash contains private data, it is stored in encrypted form as wire labels within
the MPC. Unlike in the tree-based ORAM designs where the stash is used
as a probabilistic mechanisms to deal with node overflows, in Square-Root
ORAM the stash is used deterministically on each access. Each access adds
one element to each of the level stashes, and all of the stashes must be linearly
scanned on every access. If an accessed element is found in the stash, to
preserve the obliviousness, the look-up continues with a randomly selected
element. The size of each stash determines the number of accesses that can
be done between reshufflings. Optimal results are obtained by setting the size
to Θ(

√
(N)), hence the name “square-root ORAM”. The oblivious shuffling

is performed using a Waksman network (Waksman, 1968), which requires
n log2 n − n + 1 oblivious swaps to permute n elements. Using the design from
Huang et al. (2012a), this can be done with one ciphertext per oblivious swap.

One major advantage of the Square-Root ORAM design is its concrete
performance, including initialization. All that is required to initialize is produce
a random permutation and obliviously permute all the input data, generating
the oblivious initial position map using the same method as the update protocol.
Compared to earlier ORAM designs, where initialization was done with
repeated writes, this approach dramatically reduces the cost of using the
ORAM in practice. Without considering initialization, Square-Root ORAM
has a per-access cost that is better than linear scan, once there are more than 32
blocks (for typical block sizes of 16 or 32 bytes), whereas Circuit ORAM is still
more expensive than linear scanning up to 211 blocks. Although Square-Root
ORAM has asymptotically worse behavior than Circuit ORAM, its concrete
costs per access are better for ORAM sizes up to 216 blocks. For such large
ORAMs, initialization costs become an important factor — initializing a
Square-Root ORAM requires Θ(log N) network round trips, compared to
Θ(N log N) for Circuit ORAM. Initializing a Circuit ORAM with N = 216

blocks would take several days, and its asymptotic benefits would only be
apparent for very expensive computations.

98 Oblivious Data Structures

5.5 Floram

Doerner and Shelat (2017) observed that even the sublinear-cost requirement,
which was an essential design aspect of traditional ORAM systems, was not
necessary to be useful in RAM-MPC. Since the cost of secure computation
far exceeds the cost of standard computation, ORAM designs that have linear
cost “outside of MPC”, but reduce the computation performed “inside MPC”,
may be preferred to sublinear ORAM designs. With this insight, Doerner
and Shelat (2017) revisited the Distributed Oblivious RAM approach of Lu
and Ostrovsky (2013) and based a highly scalable and efficient RAM-MPC
scheme on two-server private information retrieval (PIR). The scheme, known
as Floram (Function-secret-sharing Linear ORAM), can provide over 100×
improvements over Square-Root ORAM and Circuit ORAM across a range of
realistic parameters.

Distributed Oblivious RAM relaxes the usual security requirement of
ORAM (the indistinguishability of server traces). Instead, the ORAM server
is split into two non-colluding servers, and security requirement is that the
memory access patterns are indistinguishable based on any single server trace
(but allowed to be distinguishable if the traces of both servers are combined).
We note that it is not immediately obvious how to use this primitive in
constructing two-party MPC, since it requires two non-colluding servers in
addition to the third player—the ORAM client.

Private information retrieval (PIR) enables a client to retrieve a selected
item from a server, without revealing to the server which item was retrieved
(Chor et al., 1995). Traditionally, PIR schemes are different from ORAM in
that they only provide read operations, and that they allow a linear server
access cost whereas ORAM aims for amortized sublinear retrieval cost.

A point function is a function that outputs 0 for all inputs, except one:

Pα,β(x) =
{
β if x = α

0, otherwise.

Gilboa and Ishai (2014) introduced the notion of distributed point functions
(DPF), where a point function is secret-shared among two players with shares
that have sizes sublinear in the domain of the function, hiding the values
of both α and β. The output of each party’s evaluation of the secret-shared
function is a share of the output and a bit indicating if the output is valid:

5.5. Floram 99

yxp = Pα,βp (x) (party p’s share output of the function), and txp = (x = α) (a
share of 1 if x = α, otherwise a share of 0). Gilboa and Ishai (2014) showed
how this could be used to efficiently implement two-server private information
retrieval, and Boyle et al. (2016b) improved the construction.

The Floram design uses secret-shared distributed point functions to imple-
ment a two-party oblivious write-only memory (OWOM) and both a two-party
oblivious read-only memory (OROM). The ORAM is constructed by com-
posing the OWOM and OROM, but since it is not possible to read from the
write-only memory, Floram uses a linear-scan stash to store written elements
until it is full, at which point the state of the ORAM is refreshed by convert-
ing the write-only memory into oblivious read-only memory, replacing the
previous OROM and resetting the OWOM stash. In the OWOM, values are
stored using XOR secret sharing. To write to an element, all elements are
updated by xor-ing the current value with the output of a generated distributed
point function—so, the semantic value of the update is 0 for all elements other
than the one to be updated, and the difference between the current value and
updated value for the selected element.

Reading. In the OROM, each stored value is masked by a PRF evaluated
at its index and the masked value is secret-shared between the two OROMs.
To read element i from the OROM, each party obtains k ip from the MPC
corresponding to its key for the secret-shared DPF. Then, it evaluates Pk ip

(x)
on each element of its OROM and combines all the results with xor. For each
element other than x = i the output is its share of 0, so the resulting sum is
its share of the requested value, vip. This value is input into the MPC, and
xor-ed with the value provided by the other party to obtain Ri = vi1 ⊕ vi2. To
obtain the actual value of element i, Ri is xor-ed with the output of PRFk(i),
computed within the MPC. The PRF masking is necessary to avoid leaking
any information when the OROM is refreshed. Each read requires generating
a DPF (O(log N) secure computation and communication), O(N) local work
for the DPF evaluation at each element, and constant-size (independent of N)
secure computation to compute the PRF for unmasking. In addition, each read
requires scanning the stash within the MPC using a linear scan in case the
requested element has been updated since the last refresh. Hence, the cost of
the scheme depends on how large a stash is needed to amortize the refresh cost.

100 Oblivious Data Structures

Refreshing. Once the stash becomes full, the ORAM needs to be refreshed
by converting the OWOM into a newOROMand clearing the stash. This is done
by having each party generate a new PRF key (k1 generated by P1, k2 generated
by P2) and masking all of the values currently stored in its OWOM with keyed
PRF, W ′p[i] = PRFkp (i) ⊕Wp[i], for each party, p ∈ {1, 2}. The masked values
are then exchanged between the two parties. The OROM values are computed
by xor-ing the value received from the other party for each cell with their own
masked value to produce R[i] = PRFk1(i) ⊕ PRFk2(i) ⊕W1[i] ⊕W2[i], where
v[i] = W1[i] ⊕W2[i]. Each party passes in its PRF key to the MPC, so that
values can be unmasked within MPC reads by computing PRFk1(i) ⊕ PRFk2(i)
within the MPC. This enables the read value to be unmasked for used within the
MPC, without disclosing the private index i. Thus, refreshing the stash requires
O(N) local computation and communication, and no secure computation.
Because the refresh cost is relatively low, the optimal access period is O(

√
N)

(with low constants, so their concrete implementation used
√

N/8).

Floram offers substantial performance improvements over Square-Root
ORAM and all other prior ORAM constructions used in RAM-MPC, even
though its asymptotic costs are linear. The linear-cost operations of the OROM
and OWOM are implemented outside the MPC, so even though each access
requires O(N) computation, the concrete cost of this linear work is much
less that the client computation done within the MPC. In Doerner and Shelat
(2017)’s experiments, the cost of the secure computation is the dominant cost
up to ORAMs with 225 elements, after which the linear local computation cost
becomes dominant. Floram was over able to scale to support ORAMs with 232

four-byte elements with an average access time of 6.3 seconds over a LAN.
Floram also enables a simple and efficient initialization method using the

same mechanism as used for refreshing. The Floram design can also support
reads and writes where the index is not private very efficiently—the location
i can be read directly from the OWOM just by passing in the secret-shared
values in location i of each party’s share into the MPC. Another important
advantage of Floram is that instead of storing wire labels as is necessary for
other RAM-MPC designs, which expands the memory each party must store
by factor κ (the computational security parameter), each party only needs to
store a secret share of the data which is the same as the original size of the
data for each the OROM and OWOM.

5.6. Further Reading 101

5.6 Further Reading

Many other data structures have been proposed for efficient MPC, often
incorporating ORAM aspects. Keller and Scholl (2014) proposed efficient
MPC data structures for arrays, built on top of ORAM designs. Wang et al.
(2014b) devised oblivious data structures including priority queues that take
advantage of sparse and predictable access patterns in many applications, and
presented a general pointer-based technique to support efficient tree-based
access patterns.

We only touched on the extensive literature on oblivious RAM, focusing
on designs for MPC. ORAM continues to be an active research area, with many
different design options and tradeoffs to explore. Buescher et al. (2018) study
various MPC-ORAM designs in application settings and developed a compiler
that selects a suitable ORAM for the array-accesses in a high-level program.
Faber et al. (2015) proposed a three-party ORAM based on Circuit ORAM
that offers substantial cost reduction in the three-party, honest majority model.
Another new direction that may be useful for MPC ORAM is to allow some
amount of limited leakage of the data access pattern to gain efficiency (Chan
et al., 2017; Wagh et al., 2018).

