A Pragmatic Introduction to Secure Multi-Party Computation: Errata

David Evans
University of Virginia
evans@virginia.edu

Vladimir Kolesnikov
Georgia Institute of Technology
kolesnikov@gatech.edu

Mike Rosulek
Oregon State University
rosulekm@eecs.oregonstate.edu
Errata (in Reverse Chronological Order)
Last update: April 15, 2020

13 April 2020

Many corrections suggested by Weiran Liu and Shengchao Ding. The substantive ones are:

- Figure 2.3: The notation C should be replaced by C.

- Figure 3.1 relabeled as Table 3.1 (and references fixed).

- p. 41: “Generalization to more than two parties. ... where n players P_1, P_2, \ldots, P_n evaluate a boolean circuit F” should be C.

- p. 53: “by setting both subshares of the first wire to a random string $R_1 \in R \mathcal{D}$” should be $R_1 \in R \mathcal{D}_S$.

- p. 54, Section 3.6, last paragraph: “Then P_1 transfers to P_2 active wires on the input labels” should be “Then P_1 transfers to P_2 active labels on the input wires.”

- p. 61, Section 3.8.1: Replaced Alice and Bob with P_1 and P_2.

- Figure 4.1: In 3(a), the notation $p_a \oplus p_b$ should be $p_a^0 \oplus p_b^0$.

- Figure 4.1: The notation R (in 3(b)) should be replaced by Δ.

- p. 71: to obtain either c_0 (should be c^0) (false, when $b = b_0$ (should be b^0)) or $c^1 = c^0 \oplus \Delta$ (true, when $b^1 = b^0 \oplus \Delta$ (should be $b = b^1$)). Similar problem in the line before ($c_0 \oplus b_0$ should be $c^0 \oplus b^0$).

- p. 88, Figure 5.1, caption: A single array access requiring n (should be N) multiplexers.

- p. 90, above Other Oblivious Data Structures: the total circuit size for k operations is $O(k \log n)$ (should be $O(k \log N)$).

- p. 95, first paragraph: “...could be implemented with less than 0.0001 probability of overflow for $\delta = 32$” should be “for a bucket size of 32”.

• p. 99, first paragraph: The missing close parentheses should be after "function" earlier in this sentence, \(y_p^x = P_\alpha^\beta(x) \) (party \(p \)'s share output of the function), and \(t_p^x = (x = \alpha) \) (a share of 1 if \(x = \alpha \), otherwise a share of 0).

• Figure 6.1: should be Table 6.1.

• p. 109, first paragraph: “circuits agree, or by recovering \(P_2 \)’s” should be \(P_1 \)'s.

• p. 130: \(P_2 \) computes \(s_3 \) should be \(s_2 \).

• p. 136, paragraph 2: \(x_i = j \in \{1..i\} \ x_i^j \) should be \(j \in \{1..\sigma\} \).

• p. 136, last paragraph: “Then, instead of \(P_2 \) just sending the keys associated with its input, it sends the appropriate decommitments.” should be \(P_1 \).

23 June 2019

• Footnote 1 on Page 34 (Patricia Thaine): “will reveal \(x \) to \(P_1 \)” should be “will reveal \(x \) to \(P_2 \)”.

• Section 4.1.2 (p. 67, bottom) (Patricia Thaine): The share reconstruction description didn’t include the semantic indexes. To clarify, it should be:

The share reconstruction procedure on input \(sh_1i, sh_2i \), outputs \(sh_1i \oplus sh_2i = s_i \).

• Section 6.2 (p. 109) (Patricia Thaine):

"It follows that the parties must always perform the second phase, even when \(P_1 \) is honest."

should be

"It follows that the parties must always perform the second phase, even when \(P_1 \) is caught cheating."

• Section 6.5.1 (p. 113-114) (Patricia Thaine): The given wording could be interpreted ambiguously,
“In other words, the ZK proof should prevent parties from running π honestly, but with different inputs in different rounds.”

Replaced with:

“In other words, the ZK proof should prevent parties from running π with different inputs in different rounds.”

10 July 2019

- Fixes to notation in Section 4.1 (the GESS construction) to avoid confusion in the Δ notation. (Shengchao Ding)

23 Aug 2019

- Section 4.1.3, p. 71, line 2-3 (Shengchao Ding): “when v_a is false, $v_c = v_b$” should be “when v_a is true, $v_c = v_b$”

- Section 4.2.2, several instances (Shengchao Ding): “CMBC-GC” should be “CBMC-GC”

2 October 2019

- Figure 3.4 (BMR Multi-Party GC Generation) (Kelong Cong): line 23 of the figure has $w_{c,1}^0$, but it should be $w_{c,1}^1$.